Exploration of properties of differentiable logics through
mechanisation

Reynald Affeldt, Alessandro Bruni, Ekaterina Komendantskaya, Kathrin Stark,
and Natalia Slusarz

Verification of Neural Networks consists of two parts: 1. verification of a given property per
se, and 2. training of the neural network, that optimises neural network’s parameters towards
satisfying the given logical property; cf. e.g. [1]. The latter is usually done via modifying the
neural network’s loss function. A group of methods that allow to generate loss functions from
an arbitrary logical property is known under an umberella term of Differentiable Logics (DLs).
For example, well-studied fuzzy logics that date back to the works of Lukasiewicz and Gédel can
be used as DLs [6]. Recently, both verification and machine-learning communities formulated
alternative DLs such as DL2 [7] and STL [4] claimed to be more performant in optimisation
tasks.

Our interest in DLs lies in making their embedding into the overall verification cycle more
smooth and generic [2]. However, our initial attempt in [3] to express the existing DLs in
the same generalised language met some obstacles. Firstly, soundness of some DLs, such as
STL [4], remained an open problem and was hard to resolve manually. Pen and paper proofs
of some other conjectured soundness results had many tricky cases that were prone to errors.
Secondly, Varnai et al. [2] strongly argued for characterisation of DLs in terms of their geometric
properties that are valuable for optimisation tasks: smoothness, scale-invariance, shadow-lifting.
Shadow-lifting was the most original and important of the three, and encapsulated the idea of
gradual improvement in property-driven training. However, their published proof sketches were
not sufficiently detailed, and—even more importantly—did not immediately generalise to other
DLs. Both of these groups of challenges called for rigorous computer formalisation of DLs,
together with proofs of their major logical and geometric properties, in an interactive theorem
prover based on dependent-type theory.

In this talk, we will present the resulting formalisation in Coq. By exploiting higher-order
syntax and dependent types, we formalised and proved properties of all DLs of interest in
a generic way. In particular, the Mathematical Components library, especially its modules
algebra and analysis, enabled full proofs of geometric properties. This new level of rigour and
modularity allowed us to positively solve the open problem of STL soundness; verify other
soundness results; and for the first time give proofs of shadow-lifting for all DLs for which they
hold. Proofs of other geometric properties are left for future work.

References

[1] Casadio, M., Komendantskaya, E., Daggitt, M., Kokke, W., Katz, G., Amir, G., Refaeli, I.: Neural
Network Robustness as a Verification Property: A Principled Case Study. Int. Conf. on Computer
Aided Verification: CAV (1) 2022: 219-231

[2] Daggitt, M., Kokke, W., Atkey, R., Slusarz, N., Arnaboldi, L., Komendantskaya, E.: Vehicle:
Bridging the Embedding Gap in the Verification of Neuro-Symbolic Programs. arXiv https://
arxiv.org/abs/2401.06379

[3] Slusarz, N., Komendantskaya, E., Daggitt, M. L., Stewart, R., and Stark, K. (2023). Logic of
Differentiable Logics: Towards a Uniform Semantics of DL. In Proceedings of 24th International
Conference on Logic (Vol. 94, pp. 473-493).


https://arxiv.org/abs/2401.06379
https://arxiv.org/abs/2401.06379

(4]

Varnai, P., and Dimarogonas, D. V. (2020, July). On robustness metrics for learning STL tasks. In
2020 American Control Conference (ACC) (pp. 5394-5399). IEEE.

Mathematical ~Components Team. Mathematical components library, 2007. URL
https://github.com/math-comp/math-comp. Last stable version: 2.2 (2024).

van Krieken, E., Acar, E., and van Harmelen, F. (2022). Analyzing differentiable fuzzy logic oper-
ators. Artificial Intelligence, 302, 103602.

Fischer, M., Balunovic, M., Drachsler-Cohen, D., Gehr, T., Zhang, C., and Vechev, M. (2019, May).
DL2: training and querying neural networks with logic. In International Conference on Machine
Learning (pp. 1931-1941). PMLR.



	References

