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In saturation-based automatic theorem proving (ATP), clause selection is a crucial heuristic
decision point. Neural networks (NNs) have been successfully trained to aid the proof search
by approximately prioritizing clauses in a way that leads to a quick derivation of a proof
[2, 6, 4, 10, 5]. Typically, such a NN is trained on a set of clauses that were derived in
successful proof searches. The clauses are labeled: Positive clauses have contributed to a proof,
while negative clauses have not. A straightforward approach trains a neural classifier of clauses
[6, 10]. We motivate an alternative approach based on classification of clause pairs by two
observations:

1. The training data in the form of labeled clauses can be interpreted as a specification of
a relative preference over clauses: Each positive clause in a proof search is preferred over
each negative clause in the same proof search. Specifying pairwise preference relation over
clauses opens up the possibility of using finer-grained training data that only compares
pairs of causes that belonged to a passive set simultaneously – we no longer have to
consider every positive competing against every negative.

2. The final output of a clause selection heuristic is one clause from a passive set, rather than
a partition of the passive set into positive and negative sets. Standard clause selection
heuristics order the clauses by a heuristic weight (for example, derivation tree size or
number of symbol occurrences in the clause) and prioritize clauses with the lowest weight.
Similarly, we may prefer our NN to assign weights to clauses in such a way that the clauses
with relatively small weights should be selected early.

Learning to rank is the machine learning task of training a ranking model – a system that
ranks an arbitrary set of objects (e.g., clauses). The training data is typically supplied in the
form of a partial order on a set of objects. RankNet [3] introduces a design of the loss function
and the last layer of the NN that allows training the NN to rank arbitrary objects represented
by feature vectors.

To train a clause selection heuristic in a RankNet-based approach, I trained a classifier of
clause pairs C+, C− that estimates whether C+ is more useful than C− when these two clauses
compete for selection in a proof search [2]. The NN predicts an intermediate weight w(C) for
each clause C. w(C+) < w(C−) signifies that C+ is estimated to be more useful than C−, so
ranking a set of clauses amounts to sorting the clauses by their predicted weights.

This design allowed me to define w as a weighted sum of symbol weights constrained to be
greater than 1. The resulting clause weight was a pragmatic conservative modification of the
popular symbol counting clause weight. Defining clause weight in this way would be non-trivial
if the NN was trained as a clause classifier, while the RankNet design accommodates such
definition naturally.

Notably, the RankNet-based approach is sufficiently generic to be applied to other decision
points in ATP. In the past, I successfully applied it to symbol precedence recommendation [1].

In my presentation, I will explain the design of RankNet and its generalization DirectRanker
[7], and describe how I applied it to clause selection and symbol precedence recommendation.
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