
Neuro-Symbolic Specification Generation for C programs

George Granberry, Wolfgang Ahrendt, Moa Johansson
Chalmers University of Technology

{georgegr,ahrendt,jomoa}@chalmers.se

Writing formal specifications as e.g. pre- and postconditions should ideally be done before
the programmer starts their work. This is however rarely the case, as it can be a difficult
and laborious task. The field of formal methods has developed a plethora of symbolic tools
for formal analysis of programs. These tools, which employ a range of techniques from both
static and dynamic analyses, are traditionally focused on identifying specific subsets of property
types. Beyond that, they are not very flexible. Large language models (LLMs), on the other
hand, have complementary features. Provided they are adequately trained and prompted, they
are less restricted and can potentially generate a variety of program code, specifications etc.
However, a challenge is how to prompt them to generate good quality annotations that actually
express interesting non-trivial properties.

In this research, we introduce a prototype neuro-symbolic specification generation system
called ACSLyst, which combines symbolic analyses and LLMs to generate ACSL annotations for
C programs. We examine how integrating outputs from symbolic analysis tools from the Frama-
C ecosystem into prompts to GPT-4 influences the quality and characteristics of annotations
generated. Specifically, we compare the annotations generated when the GPT-4 prompts are
augmented with test-cases produced by the PathCrawler tool, and reports generated by the
Eva value analysis tool.

When prompting GPT-4 with just the plain program code, it produce a large number of
annotations, although many of them are trivial, and does not add much to our understanding of
the program. We observed that when including results from symbolic analyses by PathCrawler
and Eva into the prompts, the resulting specifications were smaller, and more focused on prop-
erties aligned with the symbolic tools. E.g. when given Eva reports, which include runtime
alarms, the generated specifications focused much more on mitigated runtime errors. And when
PathCrawler test-cases were included, the annotations were skewed towards an abstract view
of the program rather than focusing on implementation details.

In summary, we believe this is an interesting field for further exploration of specification
generation, leveraging the strengths of both traditional symbolic tools and LLMs. With our
eventual goal being to craft a copilot that more effectively incorporates intent and precision
across implementation, specifications, and tests, we plan to expand upon this foundational
study by developing systems capable of dynamically selecting symbolic tools to integrate with
LLMs.

 {georgegr,ahrendt,jomoa} @chalmers.se

