
Guiding Enumerative Program Synthesis with Large

Language Models

Yixuan Li1, Julian Parsert2, and Elizabeth Polgreen1

1 University of Edinburgh, Edinburgh, UK.
2 University of Oxford, Oxford, UK.

Pre-trained Large Language Models (LLMs) are beginning to dominate the discourse around
automatic code generation with natural language specifications [5]. In contrast, the best-
performing synthesizers in the domain of formal synthesis, where the synthesizer must gen-
erate code that satisfies a precise logical specification, are still based on enumerative algo-
rithms [11, 8, 3, 7]. In this work, we evaluate the abilities of LLMs to solve formal synthesis
benchmarks by carefully crafting a library of prompts for the domain, and propose two methods
for integrating the syntactic guidance from an LLM into an enumerative synthesis loop.

We hypothesize that, in the cases where the LLM returns only incorrect solutions, the cor-
rect solutions are most often in the vicinity of the incorrect solutions, and that, by searching
in the neighborhood of the incorrect solutions, we may be able to guide an enumerative syn-
thesize to find a solution faster. We present two methods for integrating syntactic guidance
from LLMs into an enumerative CounterExample Guided Inductive Synthesis (CEGIS) [12]
algorithm. CEGIS describes enumeration search algorithms where an enumerator enumerates
solution candidates from a context-free grammar with the help of a set of counter-examples,
and a verifier is queried to check enumerated solution candidates and produce counter-examples
in case of failure. The first method, pCFG-synth, prompts an LLM for solutions to the bench-
mark and generates a probabilistic context-free grammar (pCFG) from these solutions. It then
deploys an enumerative synthesizer biased by the weights on this pre-trained pCFG [9, 10]. The
second method, iLLM-synth, integrates the prompting within the enumerative synthesizer. In-
stead of asking the LLM to provide a full solution, we ask it to provide helper functions to help
“a student” complete a partially enumerated program. We use the responses to augment the
set of production rules in the grammar and update the weights across the existing production
rules in the pCFG during enumeration. We implement two variants of both approaches, using
two different enumeration algorithms: a probabilistic top-down enumerator [1] and a weighted
search based on the A∗ algorithm [6, 8].

We evaluated our techniques on benchmarks from the Syntax-Guided Synthesis (SyGuS) [2]
competition, and found that LLMs and enumerative solvers have distinct strengths and weak-
nesses when deployed alone. By combining the LLM and enumeration in pCFG-synth, we can
combine these strengths and weaknesses and outperform cvc5 [4], the winning SyGuS compe-
tition tool, solving 73 more benchmarks. Integrating the LLM via iLLM-synth gives greater
performance gains over a basic enumerator than using the pre-trained pCFG, and demonstrates
that, by allowing the enumerative synthesizer to prompt the LLM with information obtained
during the enumeration and allowing the LLM to provide syntactic feedback to the enumera-
tion, we can achieve performance that equals and exceeds the state-of-the-art solvers, even with
relatively simple enumerative algorithms. We argue that our results show that LLMs have the
potential to make significant contributions in the domain of formal program synthesis but the
way to achieve this is by combining these techniques with existing algorithms in the literature.



Guiding Enumerative Program Synthesis with Large Language Models Li, Parsert and Polgreen

References

[1] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund Raghothaman, Sanjit A
Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-
guided synthesis. IEEE, 2013.

[2] Rajeev Alur, Dana Fisman, Rishabh Singh, and Abhishek Udupa. Syntax guided synthesis com-
petition. https://sygus-org.github.io, 2017. Accessed: 2024-01-16.

[3] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. Scaling enumerative program synthesis
via divide and conquer. In TACAS (1), volume 10205 of Lecture Notes in Computer Science, pages
319–336, 2017.

[4] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann,
Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Math-
ias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. cvc5: A versatile
and industrial-strength SMT solver. In TACAS (1), volume 13243 of Lecture Notes in Computer
Science, pages 415–442. Springer, 2022.

[5] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[6] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Trans. Syst. Sci. Cybern., 4(2):100–107, 1968.

[7] Kangjing Huang, Xiaokang Qiu, Peiyuan Shen, and Yanjun Wang. Reconciling enumerative and
deductive program synthesis. In PLDI, pages 1159–1174. ACM, 2020.

[8] Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. Accelerating search-based program
synthesis using learned probabilistic models. In PLDI, pages 436–449. ACM, 2018.

[9] Percy Liang, Michael I Jordan, and Dan Klein. Learning programs: A hierarchical bayesian
approach. In ICML, pages 639–646. Citeseer, 2010.

[10] Aditya Menon, Omer Tamuz, Sumit Gulwani, Butler Lampson, and Adam Kalai. A machine learn-
ing framework for programming by example. In International Conference on Machine Learning,
pages 187–195. PMLR, 2013.

[11] Andrew Reynolds, Haniel Barbosa, Andres Nötzli, Clark W. Barrett, and Cesare Tinelli. cvc4sy:
Smart and fast term enumeration for syntax-guided synthesis. In CAV (2), volume 11562 of Lecture
Notes in Computer Science, pages 74–83. Springer, 2019.

[12] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. Com-
binatorial sketching for finite programs. In Proceedings of the 12th international conference on
Architectural support for programming languages and operating systems, pages 404–415, 2006.

2

https://sygus-org.github.io

	References

