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Clause selection is arguably the most important choice point in saturation-based automated
theorem proving [8]. It amounts to deciding, in each iteration of the saturation loop, which
next clause to select for activation, i.e., for the promotion from the passive set to the active
set, which means enabling this selected clause’s participation in generating inferences. In the
commonly used Discount loop [1], a refutation can only be successfully completed when all
clauses that the proof consists of have been selected.

Recently, several successful systems for machine-learned clause selection guidance have been
developed, most notably ENIGMA in several incarnations [4, 5, 6, 3] and Deepire [9, 10]. Al-
though the underlying machine learning (ML) models differ (e.g., boosted trees, neural net-
works, etc.), the systems all learn from previously observed prover derivations, training a bi-
nary classifier to recognize as positive those clauses that have appeared in the discovered proofs,
against the background of all the recorded selected clauses. Although this is typically not stated
explicitly, the learning setup in ENIGMA or Deepire can be seen to assume a working clause
selection heuristic and seeks to improve upon it through the integration of the learned advice.

On the other hand, approaches inspired by the reinforcement learning (RL) paradigm [13,
14], strive to learn a standalone clause selection heuristic from scratch [2, 11]. Although the
found proof is still used as the gold positive label for the clauses which appear in it, the
background against which the model learns consists of the passive clauses (as opposed to the
activated ones) and, moreover, each recorded derivation step can use the precise snapshot of
the passive set content at that the given moment. This RL-inspired approach a priory leads to
a regression model (as opposed to a classifier), although the technical details (notably the loss
function) are surprisingly similar.

Despite the mentioned differences, both the ENIGMA-style and the RL-inspired learning
operators ultimately aim to achieve the same pragmatic goal, namely to improve the prover
performance by learning from experiences gathered while solving problems from some bench-
mark family or distribution of interest. However, to the best of my knowledge there is no direct
experimental comparison of the two. I will center my talk around exactly that.

Using a version of Vampire [7] extended 1) to output information about successful prover
runs (most notably recording the active and passive clause set traffic and, for every mentioned
clause, a small set of easy-to-obtain features) and 2) to be guided by an ENIGMA-style clause
classifier (discriminating based on the mentioned clause features) as well as, alternatively, by
a model trained in the RL-inspired fashion to assign probabilities (via softmaxing; again as
a function of the features) for selecting any of the current passive clause, I will report on an
experimental comparison of these two basic learning operators on problems from the TPTP
library [12]. In both cases, a small neural network (a MLP) will be trained. In the ENIGMA-
style guidance, various ways of interfacing the model can be tried, where a layered approach
with lazy evaluation is expected to perform the best [9]. On the RL-inspired side, it is natural
to have the neural model determine an order for a single queue representation of the passive
set. I will also discuss the challenges for efficiently sampling from such a queue (according to
the predicted probabilities), which best matches the RL paradigm and encourages exploration,
as opposed to just always taking the best clause (which seems less faithful, but is trivial to
implement). Time permitting, I will also mention looping and iterative guidance improvement.
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