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Motivation: Clause selection

I Goal: Train a clause selection model
I Input: Set of clauses
I Output (one of):

1. Labeling of the input clauses (positive, negative)
2. Best of the input clauses
3. Ranking of the input clauses

I Training data (one of):

1. Clauses with labels (positive, negative)
2. Set of proof derivations. Each proof derivation is a set of clauses with labels (positive,

negative).
3. Pairs of clauses C+,C− such that C+ should be selected before C−
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Learning to rank: Pairwise approach

I Goal: Train a ranking model
I Input: Set of items (samples, documents) D
I Output: Ranking (permutation) over D

I Training example: Pair of items (i , j) such that i is to be ranked higher than j

I Main application domain: Recommender systems
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RankNet

Training example "i should be ranked higher than j"

xi Item i

f Score model (NN)

oi = f(xi)

Score of item i

xj Item j

oj = f(xj)

Score of item j

Tij ∈ [0, 1] Target probability

Cij = BCE(Pij, Tij) = − Tij log Pij − (1 − Tij) log (1 − Pij)

Binary cross-entropy loss

oij = oi − oj

Score of item pair (i, j)

Pij = σ(oij)

Estimated probability of "i should be ranked higher than j" σ(oij) =
eoij

1 + eoij
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RankNet loss as a function of oi − oj

Credit: Burges et al. Learning to rank using gradient descent. ICML 2005.
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RankNet with Tij = 1

Training example "i should be ranked higher than j"

xi Item i

f Score model (NN)

oi = f(xi)

Score of item i

xj Item j

oj = f(xj)

Score of item j

oij = oi − oj

Score of example (i, j)

Pij = σ(oij)

Estimated probability of "i should be ranked higher than j"

Cij = BCE(Pij, 1) = − log Pij

Binary cross-entropy loss
Cij = log(1 + eoj−oi )
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Symbol weight recommender

Training example "C− is worse than C+"

Input problem

GNNx− Symbol counts x+ Symbol counts

C− Negative clause C+ Positive clause

1 + softplus(*) Output activation

w Symbol weights

o− = x− · w Weight of clause C− o+ = x+ · w Weight of clause C+

o = o− − o+

Score of clause pair (C−, C+)

P = σ(o)

Estimated probability of "C− is worse than C+"

l = BCE(P, 1) = − log P

Binary cross-entropy loss

softplus(x) = log(1 + ex)
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Symbol precedence recommender

Training on "ρ is worse than π"

Prediction

Input problem

GNN

c Symbol costs

oρ = ρ-1 · c

Cost of ρ

oπ = π-1 · c

Cost of π
Sort symbols by cost

ρ Worse precedenceπ Better precedence

o = oρ − oπ
Score of precedence pair (ρ, π)

P = σ(o)

Estimated probability of "ρ is worse than π"

l = BCE(P, 1) = − log P

Binary cross-entropy loss

π* Recommended precedence
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Conclusion

Tasks suitable for RankNet:

I Goal: Rank a set of items or get a top-ranked item

I Training data: Ranked pairs of items

Future work with RankNet:
I Clause selection:

I Train a full NN clause ranking model to be queried at runtime
I Generalize symbol counting clause weight to a RNN on term structure
I Optimize symbol weights on problems with a common signature, use logistic regression

instead of gradient descent

I Simplification ordering on terms: Train KBO symbol weight jointly with precedence

I Stress top-ranked items more when training

Thank you for your attention!
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Appendix
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In Ulf Brefeld, Élisa Fromont, Andreas Hotho, Arno J. Knobbe, Marloes H. Maathuis, and Céline Robardet, editors, Machine Learning and
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DirectRanker Pairwise Learning to Rank by Neural Networks Revisited 241
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Fig. 1. Schema of the DirectRanker. nn1 and nn2 can be arbitrary networks (or other
function approximators) as long as they give the same output for the same inputs ij .
The bias of the output neuron o1 has to be zero and the activation antisymmetric and
sign conserving.

(II) The two networks nn1 and nn2 are identical (as they share the same param-
eters). Hence, they implement the same function f : F → Rn. The output
of the complete network for the two input vectors x, y ∈ F is then given by:

r(x, y) = τ [w(f(x) − f(y))] = τ [wf(x) − wf(y)] =: τ [g(x) − g(y)], (2)

where w is a weight vector for the output neuron and g : F → R. This is
antisymmetric for x and y, thus satisfying the second condition (II).

(III) Let x, y, z ∈ F , r(x, y) ≥ 0, r(y, z) ≥ 0, and let g be defined as in 2.
Since τ is required to retain the sign of the input, i.e. τ(x) ≥ 0 ⇔ x ≥ 0,
g(x) ≥ g(y) and g(y) ≥ g(z), one finds

r(x, z) = τ [g(x) − g(z)] = τ
[
g(x) − g(y)︸ ︷︷ ︸

≥0

+ g(y) − g(z)︸ ︷︷ ︸
≥0

]
≥ 0.

Thus, r is transitive and (III) is fulfilled. ��
These properties offer some advantages during the training phase of the networks
for the distinction of different relevance classes:

(i) Due to antisymmetry, it is sufficient to train the network by always feeding
instances with higher relevance in one and instances with lower relevance
in the other input, i.e. higher relevance always in i1 and lower relevance
always in i2 or vice versa.

Credit: Köppel et al. [4]
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RankNet

Training example: Pair of items i , j and target probability P̄ij of “i . j”
Loss function:

I oi = f (i) . . . score of item i

I oij = oi − oj . . . score of pair of items i , j

I Pij = σ(oij) = e
oij

1+e
oij . . . predicted probability of “i . j”

I Cij = −P̄ij logPij − (1− P̄ij) log(1− Pij) = −P̄ijoij + log(1 + eoij ) . . . binary
cross-entropy loss

Properties: reflexive (oii = 0), antisymmetric (oij = −oji ), transitive
(oij ≥ 0 ∧ ojk ≥ 0 =⇒ oik ≥ 0)
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Symbol precedence recommender: Overview

Prediction

Training

First-order logic problem

Graph constructor

Graph

Graph convolutional network

Symbol embeddings

Output layer

Symbol costs

Sort Loss function

Recommended precedence

Precedence π Precedence ρ

Loss value
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Symbol weight recommender: Overview

Recommender

EvaluationTraining

Input problem

Neural network

Automatic theorem prover

Output activation
1+softplus(*)

Symbol weights w(*)

Clause C+ Clause C−

Clause weight W(C+) Clause weight W(C−) Result

Logit W(C−) − W(C+)

Loss l = − log sigmoid(W(C−) − W(C+))
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