Two Learning Operators for Clause Selection

Guidance

Martin Suda*

Czech Technical University in Prague, Czech Republic

APSML Workshop, Vienna, March 2024

*Supported by the project RICAIP no. 857306 under the EU-H2020 pro-
gramme and the Cost action CA20111 EuroProofNet.

Machine Learning Boosted Automated Theorem Proving

Machine Learning Boosted Automated Theorem Proving

ATP technology:

Machine Learning Boosted Automated Theorem Proving

ATP technology: saturation-based

Machine Learning Boosted Automated Theorem Proving

ATP technology: saturation-based
o state of the art (cf. CASC)

e E, iProver, Vampire, ...

Machine Learning Boosted Automated Theorem Proving

ATP technology: saturation-based
@ state of the art (cf. CASC)
e E, iProver, Vampire, ...

Heuristic to boost:

Machine Learning Boosted Automated Theorem Proving

ATP technology: saturation-based
@ state of the art (cf. CASC)
e E, iProver, Vampire, ...

Heuristic to boost: clause selection

Machine Learning Boosted Automated Theorem Proving

ATP technology: saturation-based
@ state of the art (cf. CASC)
e E, iProver, Vampire, ...

Heuristic to boost: clause selection
@ the most important choice point

@ “selecting the proof clauses” intuition

Machine Learning Boosted Automated Theorem Proving

ATP technology: saturation-based
@ state of the art (cf. CASC)
e E, iProver, Vampire, ...

Heuristic to boost: clause selection
@ the most important choice point

@ “selecting the proof clauses” intuition

Two main approaches to date:

Machine Learning Boosted Automated Theorem Proving

ATP technology: saturation-based
@ state of the art (cf. CASC)
e E, iProver, Vampire, ...

Heuristic to boost: clause selection
@ the most important choice point

@ “selecting the proof clauses” intuition

Two main approaches to date:
o ENIGMA-style
@ RL-inspired

Machine Learning Boosted Automated Theorem Proving

ATP technology: saturation-based
@ state of the art (cf. CASC)
e E, iProver, Vampire, ...

Heuristic to boost: clause selection
@ the most important choice point

@ “selecting the proof clauses” intuition

Two main approaches to date:
o ENIGMA-style
@ RL-inspired

What are the differences? What is the same? Which one is better?

@ Saturation and Clause Selection
© ENIGMA-style Guidance
© RL-Inspired Guigance

@ Compare and Contrast

@ Saturation and Clause Selection

Saturation-based Theorem Proving

Resolution Factoring
AVG SAVG AVA'vVC
(G VG (AVC)o

where, for both inferences, 0 = mgu(A, A') and A is not an equality literal

Superposition

I=rvG LslVv G I~rvG ts,®t'vG
whvavee " (@t VGV G
where 0 = mgu(l,s) and r0 10 and, for the left rule L[s] is not an equality
literal, and for the right rule @ stands either for = or % and t'0 t[s]0

Preprocessing

Unprocessed

Saturation-based Theorem Proving

Resolution
AVG SAVG
(G VG

Factoring
AVA'vVC .
(AV C)o

where, for both inferences, 0 = mgu(A, A') and A is not an equality literal

Superposition

l=rvG s,V G
(L[, v GV GO

I=rv G ts, @t VG
(@t vava)e
where 0 = mgu(l,s) and r0 i 10 and, for the left rule L[s] is not an equality
literal, and for the right rule @ stands either for ~ or % and t'0 t[s]0

Preprocessing

Unprocessed

At a typical successful end: |Passive| > |Active| > |Proof |

How is clause selection traditionally done?

Take simple clause evaluation criteria:
@ age: prefer clauses that were generated long time ago

e weight: prefer clauses with fewer symbols

How is clause selection traditionally done?

Take simple clause evaluation criteria:
@ age: prefer clauses that were generated long time ago

e weight: prefer clauses with fewer symbols

Combine them into a single scheme:
@ have a priority queue ordering Passive for each criterion

@ alternate between selecting from the queues using a fixed ratio

How is clause selection traditionally done?

Take simple clause evaluation criteria:
@ age: prefer clauses that were generated long time ago

e weight: prefer clauses with fewer symbols

Combine them into a single scheme:
@ have a priority queue ordering Passive for each criterion

@ alternate between selecting from the queues using a fixed ratio

Example (Organizing Passive via two priority queues)

/A:l A:2 A:3 A4 A:5 A:G\ b
1@\\/\/:4 w:3 A\ w:3 A w:g A w:3 A\ w:6 / y age

10

© ENIGMA-style Guidance

ENIGMA-style

The core idea

Learn to recognize and prefer for selection clauses that look like
those that contributed to a proof in past successful runs.

w [Schulz00], ENIGMA [Jakubiiv&Urban17], [Loos et al.'17], ...

ENIGMA-style

The core idea

Learn to recognize and prefer for selection clauses that look like
those that contributed to a proof in past successful runs.

w [Schulz00], ENIGMA [Jakubiiv&Urban17], [Loos et al.'17], ...

The “pos/neg’s of E:
E prover can be asked to output, for every clause selected in a run,

whether it ended up in the final proof ([§88]) or not ([iiEE])

ENIGMA-style

The core idea

Learn to recognize and prefer for selection clauses that look like
those that contributed to a proof in past successful runs.

w [Schulz00], ENIGMA [Jakubiiv&Urban17], [Loos et al.'17], ...

The “pos/neg’s of E:
E prover can be asked to output, for every clause selected in a run,

whether it ended up in the final proof ([§88]) or not ([iiEE])

Next comes the ML:

@ represent those clause somehow (features, NNs, . ..)
@ train a binary classifier on the task

@ integrate back with the prover:

ENIGMA-style

The core idea

Learn to recognize and prefer for selection clauses that look like
those that contributed to a proof in past successful runs.

w [Schulz00], ENIGMA [Jakubiiv&Urban17], [Loos et al.'17], ...

The “pos/neg’s of E:
E prover can be asked to output, for every clause selected in a run,

whether it ended up in the final proof ([§88]) or not ([iiEE])

Next comes the ML:

@ represent those clause somehow (features, NNs, . ..)
@ train a binary classifier on the task
@ integrate back with the prover: “try to do more of the -

Possible Ways of Integrating the Learnt Advice

Priority:
@ sort by model’s Y/N and tiebreak by age

A2 RN a5 A A
WA A A A A

Possible Ways of Integrating the Learnt Advice

Priority:
@ sort by model’s Y/N and tiebreak by age

N7y Y vV v
w3 G TGP\

Logits:

@ even a binary classifier internally uses a real value

- @EE00 @

Possible Ways of Integrating the Learnt Advice

Priority:
@ sort by model’s Y/N and tiebreak by age
a2 R A5\ as A

WA A A A A
Logits:

@ even a binary classifier internally uses a real value
o @R a5 Y@Y@Y N
A A TACUNGIATA
Combine with the original strategy
6: 1 A:2 A:3 A: 4 A:5 A:G\

1 < Ww:a AW:3 Aw:3 Aw:s Aw:3 A w:e
S MO 1/ 10 a2 Y s sy arY asY as)
’ _ Q/:3 w:3 A\ W:3 A\ w:4 A\W:6 A\ W:8)

A3

2 A:2 8
W:3 W:3

© RL-Inspired Guigance

Saturation as an Reinforcement-Learning Environment

What ATP heuristics would the aliens come up with?

Saturation as an Reinforcement-Learning Environment

What ATP heuristics would the aliens come up with?
Agent
o the clause selection heuristic

Action

@ the next clause to select from the current passive set

Saturation as an Reinforcement-Learning Environment

What ATP heuristics would the aliens come up with?
Agent
o the clause selection heuristic

Action

@ the next clause to select from the current passive set

State
@ static - the conjecture we are trying to prove

@ evolving - the internal state of the prover at particular moment

Saturation as an Reinforcement-Learning Environment

What ATP heuristics would the aliens come up with?
Agent
o the clause selection heuristic

Action

@ the next clause to select from the current passive set

State
@ static - the conjecture we are trying to prove

@ evolving - the internal state of the prover at particular moment

Reward

@ Score 1 point for solving a problem (within the time limit)

Saturation as an Reinforcement-Learning Environment

What ATP heuristics would the aliens come up with?
Agent
o the clause selection heuristic

Action

@ the next clause to select from the current passive set

State
@ static - the conjecture we are trying to prove

@ evolving - the internal state of the prover at particular moment

Reward

@ Score 1 point for solving a problem (within the time limit) 777

Saturation as an Reinforcement-Learning Environment

What ATP heuristics would the aliens come up with?
Agent
o the clause selection heuristic

Action

@ the next clause to select from the current passive set

State
@ static - the conjecture we are trying to prove

@ evolving - the internal state of the prover at particular moment

Reward

@ Score 1 point for solving a problem (within the time limit) 777

w TRAIL [Crouse et al.’21], [McKeown'23], [Shminke'23], ...

Policy Gradient and REINFORCE [Williams'92]

The (evolving) state s of an ATP is a large amorphous blob:

@ value-based methods (Q-learning, DQN, ...) seem hopeless

Policy Gradient and REINFORCE [Williams'92]

The (evolving) state s of an ATP is a large amorphous blob:

@ value-based methods (Q-learning, DQN, ...) seem hopeless

Instead, with policy gradient methods, we train a network to
directly predict the policy 7(a|g; 0)

Policy Gradient and REINFORCE [Williams'92]

The (evolving) state s of an ATP is a large amorphous blob:

@ value-based methods (Q-learning, DQN, ...) seem hopeless

Instead, with policy gradient methods, we train a network to
directly predict the policy 7(a|g; 0)

@ can sample actions according to the distribution 7

Policy Gradient and REINFORCE [Williams'92]

The (evolving) state s of an ATP is a large amorphous blob:

@ value-based methods (Q-learning, DQN, ...) seem hopeless

Instead, with policy gradient methods, we train a network to
directly predict the policy 7(a|g; 0)

@ can sample actions according to the distribution 7

e imperfect information = the optimal policy may be stochastic!

Policy Gradient and REINFORCE [Williams'92]

The (evolving) state s of an ATP is a large amorphous blob:

@ value-based methods (Q-learning, DQN, ...) seem hopeless

Instead, with policy gradient methods, we train a network to
directly predict the policy 7(a|g; 0)

@ can sample actions according to the distribution 7

e imperfect information = the optimal policy may be stochastic!

Policy Gradient Theorem

v6?Vﬂ'(5initial) X ESNMEafvﬂ'qﬂ'(S? a)Ve In 7r(‘:"|5; 9)

Policy Gradient and REINFORCE [Williams'92]

The (evolving) state s of an ATP is a large amorphous blob:

@ value-based methods (Q-learning, DQN, ...) seem hopeless

Instead, with policy gradient methods, we train a network to
directly predict the policy 7(a|g; 0)

@ can sample actions according to the distribution 7

e imperfect information = the optimal policy may be stochastic!

Policy Gradient Theorem

v6?Vﬂ'(5initial) X ESNMEafvﬂ'qﬂ'(S? a)Ve In 7r(‘:"|5; 9)

The devil in the details:

e with 7(C|s;; 0) = softmax ([NNg(featuresc)|cepassive;)
the “Vg In 7"-bit boils down to the usual NLL loss

Policy Gradient and REINFORCE [Williams'92]

The (evolving) state s of an ATP is a large amorphous blob:

@ value-based methods (Q-learning, DQN, ...) seem hopeless

Instead, with policy gradient methods, we train a network to
directly predict the policy 7(a|g; 0)

@ can sample actions according to the distribution 7

e imperfect information = the optimal policy may be stochastic!

Policy Gradient Theorem

v6?Vﬂ'(5initial) X ESNMEafvﬂ'qﬂ'(S? a)Ve In 7r(‘:"|5; 9)

The devil in the details:

e with 7(C|s;; 0) = softmax ([NNg(featuresc)|cepassive;)
the “Vg In 7"-bit boils down to the usual NLL loss

o for q7r(57 C) we simply piCk HDid C show up in the found proof?

@ Compare and Contrast

Basic Comparison |

@ ENIGMA-style: a working clause selection heuristic

@ RL-inspired: “tabula rasa”

Basic Comparison |

@ ENIGMA-style: a working clause selection heuristic

@ RL-inspired: “tabula rasa”

Training data:

e ENIGMA-style: pos/neg; over selected only (static)

@ RL-inspired: traces; over all the generated (evolving)

Basic Comparison |

@ ENIGMA-style: a working clause selection heuristic

@ RL-inspired: “tabula rasa”

V

Training data:

e ENIGMA-style: pos/neg; over selected only (static)

@ RL-inspired: traces; over all the generated (evolving)

@ Both: clauses from found proofs

Basic Comparison |

@ ENIGMA-style: a working clause selection heuristic

@ RL-inspired: “tabula rasa”

V

e ENIGMA-style: pos/neg; over selected only (static)

@ RL-inspired: traces; over all the generated (evolving)

@ Both: clauses from found proofs

_

Integrating the learned advice:

@ ENIGMA-style: combine with your original heuristic

@ RL-inspired: One queue to rule them all!

Basic Comparison I

@ ENIGMA-style: a binary classifier

o RL-inspired: regression (logits) = action probabilities

Basic Comparison I

@ ENIGMA-style: a binary classifier

o RL-inspired: regression (logits) = action probabilities

Loss function (for the neural incarnations):

@ ENIGMA-style: binary cross entropy (NLL)
@ RL-inspired: weighted NLL (weights ~ returns)

Basic Comparison I

@ ENIGMA-style: a binary classifier

o RL-inspired: regression (logits) = action probabilities

Loss function (for the neural incarnations):
@ ENIGMA-style: binary cross entropy (NLL)
@ RL-inspired: weighted NLL (weights ~ returns)

Iterative improvement:
@ Both: yes (ENIGMA calls it “looping”)

Moving on Beyond

Is our proxy faithful enough?

@ “Just do a bit more of the good thing. What could go wrong?”

Moving on Beyond

Is our proxy faithful enough?
@ “Just do a bit more of the good thing. What could go wrong?”

e the Discount loop is fine, Otter (and LRS) much worse
e not every “move” in the proof stems from clause selection

Moving on Beyond

Is our proxy faithful enough?
@ “Just do a bit more of the good thing. What could go wrong?”
e the Discount loop is fine, Otter (and LRS) much worse
e not every “move” in the proof stems from clause selection
e fragility and chaos (saturation does not actually commute!)

e generating inferences would be fine?
o greedy simplifications may come and spoil the thing!

Moving on Beyond

Is our proxy faithful enough?
@ “Just do a bit more of the good thing. What could go wrong?”

e the Discount loop is fine, Otter (and LRS) much worse
e not every “move” in the proof stems from clause selection

e fragility and chaos (saturation does not actually commute!)

e generating inferences would be fine?
o greedy simplifications may come and spoil the thing!

Thinking more about reward:
@ What goal are we actually trying to achieve?

Moving on Beyond

Is our proxy faithful enough?
@ “Just do a bit more of the good thing. What could go wrong?”

e the Discount loop is fine, Otter (and LRS) much worse
e not every “move” in the proof stems from clause selection

e fragility and chaos (saturation does not actually commute!)
e generating inferences would be fine?

o greedy simplifications may come and spoil the thing!
Thinking more about reward:
@ What goal are we actually trying to achieve?
@ For a “universally good” proving strategy?

Moving on Beyond

Is our proxy faithful enough?
@ “Just do a bit more of the good thing. What could go wrong?”

e the Discount loop is fine, Otter (and LRS) much worse
e not every “move” in the proof stems from clause selection

e fragility and chaos (saturation does not actually commute!)

e generating inferences would be fine?
o greedy simplifications may come and spoil the thing!

Thinking more about reward:
@ What goal are we actually trying to achieve?

@ For a “universally good” proving strategy?
@ For growing a strong host of complementary strategies?

Moving on Beyond

Is our proxy faithful enough?
@ “Just do a bit more of the good thing. What could go wrong?”

e the Discount loop is fine, Otter (and LRS) much worse
e not every “move” in the proof stems from clause selection

e fragility and chaos (saturation does not actually commute!)
e generating inferences would be fine?

o greedy simplifications may come and spoil the thing!
Thinking more about reward:
@ What goal are we actually trying to achieve?
@ For a “universally good” proving strategy?
@ For growing a strong host of complementary strategies?

Learning from successes only:

Moving on Beyond

Is our proxy faithful enough?
@ “Just do a bit more of the good thing. What could go wrong?”

e the Discount loop is fine, Otter (and LRS) much worse
e not every “move” in the proof stems from clause selection

e fragility and chaos (saturation does not actually commute!)
e generating inferences would be fine?

o greedy simplifications may come and spoil the thing!
Thinking more about reward:
@ What goal are we actually trying to achieve?
@ For a “universally good” proving strategy?
@ For growing a strong host of complementary strategies?

Learning from successes only: Could we also learn from failures?

Moving on Beyond

Is our proxy faithful enough?
@ “Just do a bit more of the good thing. What could go wrong?”

e the Discount loop is fine, Otter (and LRS) much worse
e not every “move” in the proof stems from clause selection

e fragility and chaos (saturation does not actually commute!)

e generating inferences would be fine?
o greedy simplifications may come and spoil the thing!

Thinking more about reward:
@ What goal are we actually trying to achieve?
@ For a “universally good” proving strategy?
@ For growing a strong host of complementary strategies?

Learning from successes only: Could we also learn from failures?

Thank you!

	Saturation and Clause Selection
	

	ENIGMA-style Guidance
	

	RL-Inspired Guigance
	

	Compare and Contrast
	

