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Machine Learning Boosted Automated Theorem Proving

ATP technology: saturation-based
@ state of the art (cf. CASC)
e E, iProver, Vampire, ...

Heuristic to boost: clause selection
@ the most important choice point

@ “selecting the proof clauses” intuition

Two main approaches to date:
o ENIGMA-style
@ RL-inspired

What are the differences? What is the same? Which one is better?
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literal, and for the right rule @ stands either for ~ or % and t'0  t[s]0

Preprocessing

Unprocessed

At a typical successful end: |Passive| > |Active| > |Proof |
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How is clause selection traditionally done?

Take simple clause evaluation criteria:
@ age: prefer clauses that were generated long time ago

e weight: prefer clauses with fewer symbols

Combine them into a single scheme:
@ have a priority queue ordering Passive for each criterion

@ alternate between selecting from the queues using a fixed ratio

Example (Organizing Passive via two priority queues)
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The core idea

Learn to recognize and prefer for selection clauses that look like
those that contributed to a proof in past successful runs.

w [Schulz00], ENIGMA [Jakubiiv&Urban17], [Loos et al.'17], ...

The “pos/neg’s of E:
E prover can be asked to output, for every clause selected in a run,

whether it ended up in the final proof ([§88]) or not ([iiEE])

Next comes the ML:

@ represent those clause somehow (features, NNs, . ..)
@ train a binary classifier on the task
@ integrate back with the prover: “try to do more of the -
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Possible Ways of Integrating the Learnt Advice

Priority:
@ sort by model’s Y/N and tiebreak by age
a2 R A5\ as A

WA A A A A
Logits:

@ even a binary classifier internally uses a real value
o @R a5 Y@Y@Y N
A A TACUNGIATA
Combine with the original strategy
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Saturation as an Reinforcement-Learning Environment

What ATP heuristics would the aliens come up with?
Agent
o the clause selection heuristic

Action

@ the next clause to select from the current passive set

State
@ static - the conjecture we are trying to prove

@ evolving - the internal state of the prover at particular moment

Reward

@ Score 1 point for solving a problem (within the time limit) 777

w TRAIL [Crouse et al.’21], [McKeown'23], [Shminke'23], ...
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The (evolving) state s of an ATP is a large amorphous blob:

@ value-based methods (Q-learning, DQN, ...) seem hopeless

Instead, with policy gradient methods, we train a network to
directly predict the policy 7(a|g; 0)

@ can sample actions according to the distribution 7

e imperfect information = the optimal policy may be stochastic!

Policy Gradient Theorem

v6?Vﬂ'(5initial) X ESNMEafvﬂ'qﬂ'(S? a)Ve In 7r(‘:"|5; 9)

The devil in the details:

e with 7(C|s;; 0) = softmax ([NNg(featuresc)|cepassive; )
the “Vg In 7"-bit boils down to the usual NLL loss

o for q7r(57 C) we simply piCk HDid C show up in the found proof?
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Basic Comparison |

@ ENIGMA-style: a working clause selection heuristic

@ RL-inspired: “tabula rasa”

V

e ENIGMA-style: pos/neg; over selected only (static)

@ RL-inspired: traces; over all the generated (evolving)

@ Both: clauses from found proofs

_

Integrating the learned advice:

@ ENIGMA-style: combine with your original heuristic

@ RL-inspired: One queue to rule them all!
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Basic Comparison I

@ ENIGMA-style: a binary classifier

o RL-inspired: regression (logits) = action probabilities

Loss function (for the neural incarnations):
@ ENIGMA-style: binary cross entropy (NLL)
@ RL-inspired: weighted NLL (weights ~ returns)

Iterative improvement:
@ Both: yes (ENIGMA calls it “looping”)
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Moving on Beyond

Is our proxy faithful enough?
@ “Just do a bit more of the good thing. What could go wrong?”

e the Discount loop is fine, Otter (and LRS) much worse
e not every “move” in the proof stems from clause selection

e fragility and chaos (saturation does not actually commute!)

e generating inferences would be fine?
o greedy simplifications may come and spoil the thing!

Thinking more about reward:
@ What goal are we actually trying to achieve?
@ For a “universally good” proving strategy?
@ For growing a strong host of complementary strategies?

Learning from successes only: Could we also learn from failures?

Thank you!
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