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Machine Learning Boosted Automated Theorem Proving

ATP technology: saturation-based
state of the art (cf. CASC)
E, iProver, Vampire, . . .

Heuristic to boost: clause selection
the most important choice point
“selecting the proof clauses” intuition

Two main approaches to date:
ENIGMA-style
RL-inspired

What are the differences? What is the same? Which one is better?
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Saturation-based Theorem Proving

Selection Functions Quality Selections Lookahead Selection Experiments

The Calculus

Resolution Factoring

A _ C1 ¬A0 _ C2

(C1 _ C2)✓
, A _ A0 _ C

(A _ C)✓
,

where, for both inferences, ✓ = mgu(A, A0) and A is not an equality literal

Superposition

l ' r _ C1 L[s]p _ C2

(L[r ]p _ C1 _ C2)✓
or

l ' r _ C1 t[s]p ⌦ t0 _ C2

(t[r ]p ⌦ t0 _ C1 _ C2)✓
,

where ✓ = mgu(l , s) and r✓ 6⌫ l✓ and, for the left rule L[s] is not an equality
literal, and for the right rule ⌦ stands either for ' or 6' and t0✓ 6⌫ t[s]✓

EqualityResolution EqualityFactoring

s 6' t _ C

C✓
,

s ' t _ s 0 ' t0 _ C

(t 6' t0 _ s 0 ' t0 _ C)✓
,

where ✓ = mgu(s, t) where ✓ = mgu(s, s 0), t✓ 6⌫ s✓, and t0✓ 6⌫ s 0✓

Ac#ve	
Preprocessing	

Pa
rs
in
g	

Passive	

Clause	
Selec*on	U

np
ro
ce
ss
ed

	

At a typical successful end: |Passive| ≫ |Active| ≫ |Proof |
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How is clause selection traditionally done?

Take simple clause evaluation criteria:
age: prefer clauses that were generated long time ago
weight: prefer clauses with fewer symbols

Combine them into a single scheme:
have a priority queue ordering Passive for each criterion
alternate between selecting from the queues using a fixed ratio

Example (Organizing Passive via two priority queues)

S :
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ENIGMA-style

The core idea
Learn to recognize and prefer for selection clauses that look like
those that contributed to a proof in past successful runs.

➥ [Schulz00], ENIGMA [Jakubův&Urban17], [Loos et al.’17], . . .

The “pos/neg”s of E:
E prover can be asked to output, for every clause selected in a run,
whether it ended up in the final proof ( pos ) or not ( neg )

Next comes the ML:
represent those clause somehow (features, NNs, . . . )
train a binary classifier on the task
integrate back with the prover: “try to do more of the pos ”
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Possible Ways of Integrating the Learnt Advice

Priority:
sort by model’s Y/N and tiebreak by age

Logits:
even a binary classifier internally uses a real value

Combine with the original strategy

S ⊕M1,0 :
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Saturation as an Reinforcement-Learning Environment

What ATP heuristics would the aliens come up with?

Agent
the clause selection heuristic

Action
the next clause to select from the current passive set

State
static - the conjecture we are trying to prove
evolving - the internal state of the prover at particular moment

Reward
Score 1 point for solving a problem (within the time limit) ???

➥ TRAIL [Crouse et al.’21], [McKeown’23], [Shminke’23], . . .
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Policy Gradient and REINFORCE [Williams’92]

The (evolving) state s of an ATP is a large amorphous blob:
value-based methods (Q-learning, DQN, . . . ) seem hopeless

Instead, with policy gradient methods, we train a network to
directly predict the policy π(a|�s; θ)

can sample actions according to the distribution π

imperfect information ⇒ the optimal policy may be stochastic!

Policy Gradient Theorem

∇θvπ(sinitial ) ∝ Es∼µEa∼πqπ(s, a)∇θ lnπ(a|s; θ)

The devil in the details:
with π(C |si ; θ) = softmax ([NNθ(featuresC )]C∈Passive i ),
the “∇θ lnπ”-bit boils down to the usual NLL loss
for qπ(s,C ) we simply pick IDid C show up in the found proof?
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Basic Comparison I

Starts with:
ENIGMA-style: a working clause selection heuristic
RL-inspired: “tabula rasa”

Training data:

ENIGMA-style: pos/neg; over selected only (static)
RL-inspired: traces; over all the generated (evolving)

Attractor:
Both: clauses from found proofs

Integrating the learned advice:
ENIGMA-style: combine with your original heuristic
RL-inspired: One queue to rule them all!
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Basic Comparison II

Model:
ENIGMA-style: a binary classifier
RL-inspired: regression (logits) ⇒ action probabilities

Loss function (for the neural incarnations):

ENIGMA-style: binary cross entropy (NLL)
RL-inspired: weighted NLL (weights ∼ returns)

Iterative improvement:

Both: yes (ENIGMA calls it “looping”)
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Moving on Beyond

Is our proxy faithful enough?
“Just do a bit more of the good thing. What could go wrong?”

the Discount loop is fine, Otter (and LRS) much worse
not every “move” in the proof stems from clause selection

fragility and chaos (saturation does not actually commute!)
generating inferences would be fine?
greedy simplifications may come and spoil the thing!

Thinking more about reward:
What goal are we actually trying to achieve?
For a “universally good” proving strategy?
For growing a strong host of complementary strategies?

Learning from successes only: Could we also learn from failures?

Thank you!
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