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Meta-programming

Meta-programs: programs which manipulate other programs as data.

In the context of proof assistants:
- Boilerplate generation: mechanically generate terms/inductives.
- Tactics.
- Macros.
- ...

Common boilerplate generation: inductive to term transformations, e.g.
induction principles, equality deciders, printing functions, substitution
functions.
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Surveying meta-programming frameworks

Methodology:
- A tool to generate Functor instances for a simple class of inductives
(including lists and trees).

- One implementation in each framework.

Scope:
- Rocq: OCaml plugin, MetaRocq, Ltac2, Elpi
- Lean
- Agda

Goals:
- Assess the pros and cons of each framework.
- Focus on usability rather than performance.
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Case study: Functor typeclass

Class Functor (F : Type -> Type) : Type :=
{ fmap {A B} : (A -> B) -> F A -> F B }.

Inductive tree A :=
| N : list (tree A) -> tree A.
| L : A -> tree A

Fixpoint fmap_tree {A B} f x :=
match x with
| N xs => N (List.map (fmap_tree f) xs)
| L a => L (f a)
end.
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OCaml

OCaml plugins are historically the most common way to implement
meta-programs.

Rocq is implemented in OCaml: plugins extend Rocq’s implementation
(without modifying the kernel).

Plugins are low level and must deal with the quirks of Rocq’s
implementation, e.g. de Bruijn indices.
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Ocaml - Code

let build_fmap env sigma ind : Evd.evar_map * EConstr.t =
(* Construct the lambda abstractions. *)
lambda env sigma "a" ta @@ fun env ->
lambda env sigma "b" tb @@ fun env ->
lambda env sigma "f" (arr (mkRel 2) (mkRel 1)) @@ fun env ->
lambda env sigma "x" (apply_ind env ind @@ mkRel 3) @@ fun env ->
let inp = { a = 4; b = 3; f = 2; x = 1 } in
(* Construct the case return clause. *)
let sigma, case_return =

lambda env sigma "_" (apply_ind env ind @@ mkRel inp.a) @@ fun env ->
(sigma, apply_ind env ind @@ mkRel (1 + inp.b))

in
(* Construct the case branches. *)
let sigma, branches = ... in
(* Finally construct the case expression. *)
( sigma, Inductiveops.simple_make_case_or_project env sigma ... )
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OCaml - Pros and Cons

Conceptual Current

Pros - Plugins have access to full Rocq
implementation.

- OCaml is a mature programming
language.

Cons - De Bruijn index arithmetic is difficult.
- No term quotations.

- OCaml plugins are hard to set up.
- Cluttered meta-programming API.
- Explicit state management.

6/24



MetaRocq

MetaRocq provides tools for meta-programming in Rocq.

MetaRocq includes a verified reimplementation of Rocq’s kernel.

The template monad gives access to Rocq’s elaborator:

tmQuote : forall {A}, A -> TemplateMonad term

tmMkInductive : mutual_inductive_entry -> TemplateMonad unit
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MetaRocq - Code

Definition build_fmap ctx ind ind_body : term :=
(* Abstract over the input parameters. *)
mk_lambda ctx "A" (tSort @@ sType fresh_universe) @@ fun ctx =>
mk_lambda ctx "B" (tSort @@ sType fresh_universe) @@ fun ctx =>
mk_lambda ctx "f" (mk_arrow (tRel 1) (tRel 0)) @@ fun ctx =>
mk_lambda ctx "x" (tApp (tInd ind []) [tRel 2]) @@ fun ctx =>
let inp := {| fmap := 4 ; A := 3 ; B := 2 ; f := 1 ; x := 0 |} in
(* Construct the case return clause. *)
let pred :=

{| puinst := []
; pparams := [tRel inp.(A)]
; pcontext := [{| binder_name := nNamed "x" ; binder_relevance := Relevant |}]
; preturn := tApp (tInd ind []) [tRel (inp.(B) + 1) ] |}

in
(* Construct the branches. *)
let branches := mapi (build_branch ctx ind inp) ind_body.(ind_ctors) in
tCase ... pred (tRel inp.(x)) branches.
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MetaRocq - Pros and Cons

Conceptual Current

Pros - Users already know Rocq.
- Meta-programs can be formally
verified.

- Many functions are already formally
verified.

Cons - De Bruijn index arithmetic is difficult.
- Lack of abstractions to handle effects.

- Explicit state management.
- Missing high level meta-programming
features.
- Performance issues in some cases.
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Ltac2

Ltac2 is a tactic language, which provides some facilities for
meta-programming.

Still under active development.

Tactics provide a nice API to build terms with computational content. For
instance to define fmap on option types:

Definition fmap : forall A B, (A -> B) -> option A -> option B.
intros A B f x. destruct x.
- (* Some *) intros y. constructor 0. exact (f y).
- (* None *) constructor 1.

Defined.
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Ltac2 - Code

(* Expects a goal of the form [forall A B, (A -> B) -> F A -> F B]. *)
Ltac2 build_fmap F : unit :=

(* intro *)
intro @A ; intro @B ; intro @f ; intro @x ;
(* destruct *)
Std.case false (Control.hyp @x, NoBindings) ;
(* Build each branch. *)
let n_ctors := ... in
Control.dispatch (List.init n_ctors (build_branch F @A @B @f)).
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Ltac2 - Pros and Cons

Conceptual Current

Pros - Tactics provide a nice API to build terms. - Implicit state management.

Cons - Tactics are hard to reason about.
- Implicit backtracking.

- Ltac2 is missing many basic language
features.
- Weak termmanipulation API.
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Elpi

Elpi is a logic programming language (derived from Lambda-Prolog), which
provides facilities for meta-programming.

Programming is done using predicates rather than functions. For instance:

pred map i:list A, i:(pred i:A, o:B), o:list B.
map [] _ [].
map [X|XS] F [Y|YS] :- F X Y, map XS F YS.

Rocq terms are represented using Higher-Order Abstract Syntax (HOAS).
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Elpi - Code

pred build-fmap i:inductive, o:term.
build-fmap I {{ fun (A B : Type) (f : A -> B) (x : lp:(FI A)) => lp:(M A B f x) }} :-

% Declare FI
(pi x\ coq.mk-app { coq.env.global (indt I) } [x] (FI x)),
% Bind the parameters.
@pi-decl `A` {{ Type }} a\
@pi-decl `B` {{ Type }} b\
@pi-decl `f` {{ lp:a -> lp:b }} f\
@pi-decl `x` (FI a) x\
% Build the case expression.
coq.build-match x (FI a) (_\_\_\r\ r = FI b)

(build-branch I a b f) (M a b f x).
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Elpi - Pros and Cons

Conceptual Current

Pros - Higher-order abstract syntax. - Powerful quoting and unquoting
mechanism.

Cons - Paradigm shift (logic programming). - Many trivial bugs are caught only at
runtime.
- Limited representations for structured
data.
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Lean

Lean 4’s elaborator is bootstrapped (implemented in Lean). Includes type
checking/inference, reduction, unification, type-class inference.

Meta-programs are Lean programs which use facilities from the elaborator.

Meta-programs use a family of monads, most notably MetaM:

reduce (e : Expr) (explicitOnly skipTypes skipProofs := true) : MetaM Expr

isDefEq : Expr → Expr → MetaM Bool
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Lean - Code

def buildFmap ind : MetaM Expr := do
-- Declare the input parameters.
withLocalDecl `A .implicit (.sort ...) fun A => do
withLocalDecl `B .implicit (.sort ...) fun B => do
withLocalDecl `f .default (← mkArrow A B) fun f => do
withLocalDecl `x .default (← apply_ind ind A) fun x => do
-- Construct the case return type.
let ret_type := Expr.lam `_ (← apply_ind ind A) (← apply_ind ind B) .default
-- Construct the case branches.
let branches ← ind.ctors.toArray.mapM fun ctr => do

let info ← getConstInfoCtor ctr
buildBranch A B f info

-- Construct the case expression.
let cases_func ← freshConstant (← getConstInfo @@ .str ind.name "casesOn")
let body := mkAppN cases_func @@ Array.append #[A, ret_type, x] branches
-- Bind the input parameters.
mkLambdaFVars #[A, B, f, x] body
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Lean - Pros and Cons

Conceptual Current

Pros - Users already know Lean.
- Access to complete Lean
implementation.
- Locally-nameless API.

- Implicit state management with
monads.

Cons - No first-class fixpoints or pattern
matching.
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Agda

Very similar to MetaRocq: meta-programming is done in Agda, using the
Reflection API.

The elaborator & kernel are accessed through the typechecking monad TC:

quoteTC : forall {A} → A → TC Term

inferType : Term → TC Type
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Agda - Code

build-clause : Name -> Name -> Name -> TC Clause
build-clause ind func ctor = do

-- Bind the input arguments.
let inp = record { ind = ind ; func = func ; a = 4 ; A = 3 ; b = 2 ; B = 1 ; f = 0 }

inp-tele =
("a" , hArg (quoteTerm Level)) ::
("A" , hArg (agda-sort @@ Sort.set @@ var 0 [])) ::
("b" , hArg (quoteTerm Level)) ::
("B" , hArg (agda-sort @@ Sort.set @@ var 0 [])) ::
("f" , vArg (pi (vArg @@ var 2 []) @@ abs "_" @@ var 1 [])) :: []

inContext (List.reverse inp-tele) @@ do
-- Get the types of the constructor arguments.
let (args-tele , n-args) = ...
inContext (List.reverse @@ inp-tele ++ args-tele) @@ do

let inp = lift-inputs n-args inp
-- Transform each argument as needed.
args' <- ...

-- Build the clause.
let body = con ctor (hArg (var (Inputs.b inp) []) :: hArg (var (Inputs.B inp) []) :: args')
Clause.clause (inp-tele ++ args-tele) ... body
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Agda - Pros and Cons

Conceptual Current

Pros - Users already know Agda. - Implicit state management using
monads.

Cons - De Bruijn index arithmetic is difficult.
- Term representation is difficult to
manipulate.

- Type-class search is hard to control.
- Performance issues in some cases.
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Conceptual insights

Term representation (especially binders) is key:
- De Bruijn indices are difficult to use.
- Locally nameless and HOAS are better, but still have downsides.

Term quotations ease manipulating syntax. Quasi-quotations and quoting
open terms are especially useful.

State manipulation (local context, global environment, and unification state)
is important: meta-programs are inherently stateful.

Verification of meta-programs is desirable: not for users (the output of
meta-programs can be checked a posteriori) but for developers of
meta-programs.
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Practical insights

Learning curve is steeper when programming in a different language from
the proof assistant. Learning Elpi was especially challenging.

Tooling is important (compiler, language server, package manager):
- Comes for free whenmeta-programming in an established language.
- DSLs often have subpar tooling.

Performancewas not considered thoroughly. Choosing a good benchmark
for meta-programming frameworks is not easy.
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Questions


