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Containers and their extent            

A container 𝑆 ◃ 𝑃  is given by:

• A set 𝑆 of shapes;
• For every shape 𝑠 : 𝑆, a set 𝑃𝑠 of positions.

For every such container, its extent ⟦𝑆 ◃ 𝑃 ⟧ is a set endofunctor, taking:

• Every set 𝑋 to the set ∑𝑠:𝑆 𝑃𝑠 → 𝑋;
• Every function 𝑋 → 𝑌  to the function

𝑓 ′ : (∑
𝑠:𝑆

𝑃𝑠 → 𝑋) → (∑
𝑠:𝑆

𝑃𝑠 → 𝑌 )

𝑓 ′ (𝑠, 𝑣) ≔ (𝑠, 𝑣 ; 𝑓)

Containers arrange in a category 𝖢𝗈𝗇𝗍, whose objects are containers, and
morphisms are given by 𝖢𝗈𝗇𝗍(𝑆 ◃ 𝑃 , 𝑆′ ◃ 𝑃 ′) ≔ ∏𝑠:𝑆⟦𝑆′ ◃ 𝑃 ′⟧ 𝑃𝑠. The
extent is now a full and faithful functor ⟦−⟧ in [𝖢𝗈𝗇𝗍, 𝖤𝗇𝖽𝗈(𝖲𝖾𝗍)].
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Monad containers            

Given a container 𝑆 ◃ 𝑃 , how many monad instances feature ⟦𝑆 ◃ 𝑃 ⟧?

T. Uustalu [1] gave a combinatorial answer: a monad instance boils down to:

• A unit shape 𝑒 : 𝑆;
• A multiplication of shapes − • − : ∏𝑠:𝑆(𝑃𝑠 → 𝑆) → 𝑆
• Position projections: for every 𝑠 : 𝑆, 𝑣 : 𝑃𝑠 → 𝑆, 𝑝 : 𝑃𝑠•𝑣 there shall be

defined:
‣ 𝑣 ↖𝑠 𝑝 : 𝑃𝑠
‣ 𝑝 ↗𝑣 𝑠 : 𝑃𝑣 (𝑣↖𝑠𝑝)

These functions must satisfy some equations as well:
• 𝑒 • 𝜆_.𝑠 = 𝑠 • 𝜆_.𝑒 = 𝑠;
• (𝑠 • 𝑣) • (𝜆𝑝″.𝑤 (𝑣 ↖𝑠 𝑝″) (𝑝″ ↗𝑣 𝑠)) = 𝑠 • (𝜆𝑝′.𝑣 𝑝′ • 𝑤 𝑝′)
• (𝜆_.𝑒) ↖𝑠 𝑝 = 𝑝 ↗𝜆_.𝑠 𝑒 = 𝑝
• 𝑣 ↖𝑠 ((𝜆𝑝″.𝑤 (𝑣 ↖𝑠 𝑝″) (𝑝″ ↗𝑣 𝑠)) ↖𝑠•𝑣 𝑝) = (𝜆𝑝′.𝑣 𝑝′ • 𝑤 𝑝′) ↖𝑠 𝑝
• … And two more.
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Indexed Containers            

Fix set 𝐼, 𝐽 . An indexed container 𝑆 ◃ 𝑃  is given by:

• For every 𝑖 : 𝐼 , a set 𝑆𝑖 of shapes;
• For every 𝑖 : 𝐼, 𝑠 : 𝑆𝑖, 𝑗 : 𝐽 , a set 𝑃𝑠,𝑗 of positions.

As before, its extent ⟦𝑆 ◃ 𝑃 ⟧ is a functor in [𝖲𝖾𝗍𝐽 , 𝖲𝖾𝗍𝐼], taking:

• Every 𝐽 -indexed set 𝑋 to the 𝐼-indexed set 𝑖 ↦ ∑𝑠:𝑆𝑖
∏𝑗:𝐽 𝑃𝑠,𝑗 → 𝑋𝑗;

• Every indexed function ∏𝑗:𝐽 𝑋𝑗 → 𝑌𝑗 to the indexed function

𝑓 ′ : ∏
𝑖:𝐼

(∑
𝑠:𝑆𝑖

∏
𝑗:𝐽

𝑃𝑠,𝑗 → 𝑋𝑗) → (∑
𝑠:𝑆𝑖

∏
𝑗:𝐽

𝑃𝑠,𝑗 → 𝑌𝑗)

𝑓 ′𝑖 (𝑠, 𝑣) ≔ (𝑠, 𝜆𝑗.𝑣 𝑗 ; 𝑓 𝑗)

We shall omit indices when they can be inferred from the context.

Once again, these arrange in a category 𝖨𝖢𝗈𝗇𝗍𝐼,𝐽 , and ⟦−⟧ extends to a full
and faithful functor.
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Monoidal Structure            

When 𝐼 = 𝐽 , extents become endofunctors on 𝖲𝖾𝗍𝐼 , with the well known
strict monoidal structure given by identity and composition. These are in turn
isomorphic to extents of indexed containers, and in fact they are reflected by
a lax-monoidal structure.

𝖨 ≔ (𝜆_. 𝖴𝗇𝗂𝗍) ◃ (𝜆𝑖 _ 𝑗.𝑖 ≡ 𝑗)

𝑆 ◃ 𝑃 ⊗ 𝑆′ ◃ 𝑃 ′ ≔ (⟦𝑆′ ◃ 𝑃 ′⟧(𝑆)) ◃
(
((𝜆(𝑠, 𝑣) 𝑘. ∑

𝑗:𝐼
∑

𝑝:𝑃 ′
𝑠,𝑗

𝑃𝑣 𝑝,𝑘
)
))
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A few unsurprising lemmas            

Lemma (unsurprising)   ⟦−⟧ : (𝖨𝖢𝗈𝗇𝗍𝐼,𝐼 , 𝖨, ⊗) → (𝖤𝗇𝖽𝗈(𝖲𝖾𝗍𝐼), id, ;) is strong
monoidal.

Lemma (also unsurprising)   Full, faithful and strong monoidal functors
reflect monoids.

And since we know that:

Definition (meme)  A monad is just a monoid in the category of
endofunctors.

We can conclude that monads on extents of indexed containers are in
bijection with monoids in (𝖨𝖢𝗈𝗇𝗍𝐼,𝐼 , 𝖨, ⊗).
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Indexed monad containers            

Analogously to monad containers, they comprise:

• A family of unit shapes 𝑒 : ∏𝑖:𝐼 𝑆𝑖;
‣ such that 𝑃𝑒𝑖,𝑗 is only (possibly) inhabited if 𝑖 ≡ 𝑗;

• A multiplication of shapes − • − : ∏𝑖:𝐼 ∏𝑠:𝑆𝑖
(∏𝑗:𝐼 𝑃𝑠,𝑗 → 𝑆𝑗) → 𝑆𝑖

• Position projections: for every 𝑖 : 𝐼, 𝑠 : 𝑆𝑖, 𝑣 : ∏𝑗:𝐼 𝑃𝑠,𝑗 → 𝑆𝑗, 𝑗 : 𝐼, 𝑝 :
𝑃𝑠•𝑣,𝑗 there shall be defined:
‣ 𝑣 ↑ 𝑝 : 𝐼 ;
‣ 𝑣 ↖ 𝑝 : 𝑃𝑠,𝑣↑𝑝
‣ 𝑣 ↗ 𝑝 : 𝑃𝑣 (𝑣↖𝑝),𝑗

They have to satisfy similar equations to the non-indexed ones, plus:
• (𝜆𝑞.𝑤 (𝑣 ↖ 𝑞)(𝑣 ↗ 𝑞)) ↑ 𝑝 ≡ 𝑤 ((𝜆𝑞.𝑣 𝑞 • 𝑤 𝑞) ↖ 𝑝) ↑ ((𝜆𝑞.𝑣 𝑞 • 𝑤 𝑞) ↗

𝑝);
• 𝑣 ↑ ((𝜆𝑞.𝑤 (𝑣 ↖ 𝑞)(𝑣 ↗ 𝑞)) ↖ 𝑝) ≡ (𝜆𝑞.𝑣 𝑞 • 𝑤 𝑞) ↑ 𝑝;
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Example: Indexed Writer            

Given a 𝖲𝖾𝗍-monoid (𝑊, 𝜀, ⋅), and a 𝑊 -action (− ▸ −) on 𝐼 , we can define a
𝖲𝖾𝗍𝐼  endofunctor as follows:

𝖶𝗋▸𝑋𝑖 ≔ ∑
𝑤:𝑊

𝑋𝑤▸𝑖

This is a generalization of the well known writer monad, isomorphic to the
extent of the container (𝜆_.𝑊) ◃ (𝜆𝑖 𝑤 𝑗.𝑤 ▸ 𝑖 ≡ 𝑗). An appropriate monad
structure is described by:

𝑒𝑖 ≔ 𝜀 𝑤 • 𝑤′ ≔ 𝑤 ⋅ 𝑤′

_ ↑𝑖,𝑤,𝑗 _ ≔ 𝑤 ▸ 𝑖 _ ↖𝑖,𝑤,𝑗 _ ≔ 𝗋𝖾𝖿𝗅

_ ↗𝑖,𝑤,𝑗 _ ≔ ( ▸ preserves ⋅ )

The constraint on 𝑃𝑒𝑖,𝑗 is granted by ▸ respecting 𝜀, while the other
constraints are either trivial or granted by the monoid structure on 𝑊 .
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About the formalization            

Probably the most relevant slide for everyone here. This is all formalized in
https://github.com/mikidep/indexed-containers (contains Unicode crimes).

Several subtleties of working formally with indexed containers in Cubical
Agda emerged. Let’s discuss after the talk if you’re into this sort of stuff.
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Conclusions and future works            

• We should soon be able to describe cartesian monads and monad
morphisms in this framework.

• We would like to use this to rule out monad candidates (ideas?)
• The free monad on the extent of an indexed container is represented by an

indexed container as well.
• There are another couple instances that we expect to see (not proven yet).
• We plan to figure out groupoid containers and extend this approach there

(cf. Philipp’s talk).
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Thank you!
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