A Mathematical Theory of Term Relations

Francesco Gavazzo

University of Padua



Syntactic and Operational Semantics

T A
LOAD rl,b; RET \
X += xX; return x ﬂ ﬂ
=2/

AaA(x :a).x:Ya.a — «a
II(x:A). refl(x) : x =4 x L2




Syntactic and Operational Semantics

T A
LOAD rl,b; RET \
X += xX; return x ﬂ ﬂ
=2/

AaA(x :a).x:Ya.a — «a
II(x:A). refl(x) : x =4 x L2




Operational = Meaning through computation

Syntactic = Definitions based on syntax (no denotations, no machines)

FTrteT (Ax.t)s — t[s/x] 2 . I ;\! Y~0
A



Operational = Meaning through computation

Syntactic = Definitions based on syntax (no denotations, no machines)

FTrteT (Ax.t)s — t[s/x] 2 . I ;\! Y~0
A

Key semantic behaviours (Deep Invariants of Syntax)

Type safety Consistency Congruence

Cut Elimination (Confluence 4+ Termination) Parametricity
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Q. What is the general theory of operational semantics?

e What is its ‘initial algebra semantics'?
A. We still don't know!

Mainstream approach: Proof-Theoretic Semantics

e (G)SOS: (Categorical) Structural Rules

e Reduction Semantics: (Categorical) Rewriting

Today — Relational Foundation
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. Semantics given as relations on syntactic terms — Term Relations
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. Semantic meta-theory as properties of term relations

t>T t—os
s> T

Congruence T ®81,...,th =8y =C~

C[tl,...,tn] 20[817...,Sn]

t] —t >ty

Confluence —i—= C D
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Type Safety

3. Relational Proof Techniques

e Tait-Martin-Lof (confluence)
e Howe’s method (congruence)
e Logical Relations (parametricity)
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Q. Why no relational foundation, then?

A. Term relations are language-dependent and syntax-dependent
e Relations in context, Type-respecting relations, ...

Based on syntax-specific operations

e Pattern-matching
e Unification and substitution

Built proof-theoretically sOperational semantics as proof-theoretic
semantics

e Induction, finitary rules (type elaboration, reduction)
e Coinduction, inifinitary rules (bisimilarity, o-reduction)
e Impredicativity, HO quantification (contextual equivalence,

Leibniz equality)

B. A-calculus example of all of that!
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This Talk:

e Mathematical Theory of Term Relations

e QOutline of a relational foundation of Operational Semantics

Methodology

— T
Structural Analysis Algebraic Synthesis
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Relational
Algebraic Theory of Syntax
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Step 1: Relational Syntax

Term Relations = Syntactically-defined Relations on Syntactic Terms

Term Relations = Structurally -defined Relations on Syntactic Strcutures

Universe of Terms Topos & (Set,Set“'™* Nom)
Atomic Terms &E-object V
Term Constructs Signature Functor 2 : & — &
Initial (V +)-algeb
Terms nitial ( )-algebra
Free monad X'V = ux.V + 3x

Term Interpretation Term Relation
Homg(2'V, -) Relg(Z'V,3TV)




Relational Extension

Topos & — Allegory Rel (&)
(Av a: b7 ao7 Ui ai, mi ai)

Functor 2: & - & — Relator = : Rel(E) — Rel(E)

Initial F-algebra ~ —  Relational Initial F-algebra

(V) (a)
V+Z(ZIV) ........... >V+Z(A)

[rm]l la

DO 7S > A
(a)

Monad (R, 71, p) - Lax monad (R, 7. p)
sty L sty

Z‘Tﬁal S jﬁa

ZTZ*VTZTV



Algebraic Syntax | Relational Syntax
Topos & Allegory A

&E-object A-object

Functor2: 8 — & RelatorT': A — A

NB. Algebraic and relational views are equivalent



Step 2: Structure of Term Relations

Structure ¢ : F(Z'V,....2V) 5=vVin &
Operation  ©: Rel(8)(3V,27V)" — Rel(€)(Z'V,3V)

F(al yeesan)

F(E'V,...,3'V) FE'V,...,31V)

¢°Q ¢l lw ®(@) = ¢°: F(@); 0

STV e, =Ty

®(ay,...,an)

w ®(ay,...,a,) pattern-matches F-terms in 37V

iz McCarthy’s Analytic Syntax

10



How many structures for syntax?

Atoms

n:vV-—-3v

Term Constructs

o:22W) - 3fv

Contexts

p:2(ZV) - 3TV

Substitution

{2V eV -3V

Linear Contexts

1: 2TV xda(E'V) - 2TV
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How many structures for syntax?

Atoms n:vV-—-3v
Term Constructs o:22W) - 3fv
Contexts p:2(ZV) - 3TV
Substitution (:2Vesv -3y
Linear Contexts | A: 327V xdx(Z'V) —» 3fv

Compatible Refinement

2(2TV) =4 2(5TV)

XFty as; -+ XFty, a s,
o° o o

X rFop(ty,...,tn) @ op(si,...,Sy)

STV = XY
a



Atom Co-Reflexive

........... (. >ty

Q/

xeV

X,xkx Ay x
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Atom Co-Reflexive

Ay
L VA > 3Ty xeV
. ]/ X,xkx Ay x
n n
n
\%
Context
stxfy 24 ststy
XFty asy -+ XFty, a sy
p° P P
X FC[t1,...,tn] a° Cls1,...,8,]

DL VAT >3y
aC
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Basic account of relational use of syntax

= A piece of syntax is (variable | operator | ---),
if | use it as (variable | operator | ---)

s Relations as actions (Pratt) as manipulations
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Basic account of relational use of syntax

= A piece of syntax is (variable | operator | ---),
if | use it as (variable | operator | ---)
s Relations as actions (Pratt) as manipulations
Algebraic Syntax: A = A, U A
Structural Induction: A, UaCa = A, Ca
Congruence: a C a

Free Monad: o° = jix.A, UaUx
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(V+2)([n,01;a)

V + Z(ZTV) il >V +3(2'V)

XxXat

STV e N NAY
([n,0];a)
[ —

aH

ty a sy oo t, d" s,

L [n,0];a

op(s1,...,8,) a u

op(t1,...,tn) a" op(si,...,sn)
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(V+2)([n,01;a)

V+ z(va) ........................... >V + z(z’fv)
[n7,0] L l [n,0];a
STV e N NAY
([n,ol;a)
—_——
aH
Xxat t; a" sy --- ty d s, op(si,...,sp) au
x a" x xa't op(ty,...,tn) a" op(si,...,sn)

i ¢" is the Howe Extension of a — Congruence of Bisimilarity
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(V+2)([n,01;a)

V+Z(ZTV) ........................... >V+Z(ZTV)
[n7,0] L l [n,0];a
STV e N NAY
([n,ol;a)
—_——
aH
Xxat t; a" sy --- ty d s, op(si,...,sp) au
x a" x xa't op(ty,...,tn) a" op(si,...,sn)

i ¢" is the Howe Extension of a — Congruence of Bisimilarity

iw (— UA)" is Parallel Reduction — Tait-Martin-L6f Technique

a[A]°;a[A] C A & a[A]°;a" C a°[a"] = a™°;a" C a";a™

14



Step 3: Calculus of Term Relations

Collection of operations on Rel(E)(2V,2TV)

AU+ oy
N

pure relational operations term relation operations

Subject to simple calculational laws

a; (A, Ub) Cb = a"Cb

A,,Uauggb = a“Cbh

15



Step 4: Term Relation Algebras

Calculus of Term Relations internal to Rel(&)(Z'V,=2TV)

= Building blocks and reasoning principles of term relations

1= |solates the very structure of term relations
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Step 4: Term Relation Algebras

Calculus of Term Relations internal to Rel(&)(Z'V,=2TV)

iz Building blocks and reasoning principles of term relations

1= |solates the very structure of term relations

extends
L— .
Algebraic Theory Relational Theory Term Relation
of Syntax of Syntax Algebras
-~
restricts

defines ) .
axiomatise

Y

Internal Calculus
Term Relations

16



Term Relation Algebras

TRAs give a synthetic and pointfree theory of term relations

s= Just one kind of object: relations

i No syntax, no syntactic structure — syntax independence
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Term Relation Algebras

TRAs give a synthetic and pointfree theory of term relations

s= Just one kind of object: relations

i No syntax, no syntactic structure — syntax independence

TRAs are easy to use

s= Directly endow conrete formalisms with TRA structure

x:Trt a s:8 Tart a s:T

FTFA(x:T).t a A(x:T).s:T— S I'rAat a Aa.s:VaT

Tttt at':S—>T TI'tsas':S

I'rts a t’s’: T

= Quasi-equational reasoning — mechanised semantics

17



TRASs capture operational use of syntax
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Term Constructs

o:2W) - 3fv

Contexts
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Substitution
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Heterogenous Systems
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TRASs capture operational use of syntax

Atoms Y%
Term Constructs o:2W) - 3fv
Contexts p:2(ZV) - 3TV
{3V eV -3V
Substitution Modules over monads
Heterogenous Systems
Linear Contexts | A: 3V xd3(2TV) - 37V

No matter which structure used for substitution: a[b] = (°. (a® b);{

(a;¢)[b;d] C a[b];c[d] (a[b])[c] = a[b[c]] a[b] C a[b]
alb]® = a°[b°] Aplal = a = a[Ay] alb] Cc & aChb»c
X1,...,XpFt a»b 8 & Vr,0. Y+1(%;) a o(x;)) = Yrt[r] b s[o]

= Logical Relations



Relational Syntax, Revisited

Algebraic Theory
of Syntax

extends
" Relational Theory " Term Relation
.~ of Syntax < _ Algebras
restricts ) -?— )
defines . .
axiomatise

Y

Internal Calculus
Term Relations
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Relational Syntax, Revisited

extends

Algebraic Theory
of Syntax

L—

-

Structure

Relational Theory
of Syntax

Term Relation
Algebras

restricts

defines

Y

axiomatise

Internal Calculus
Term Relations

p:FE'V,....2'V) > 3Ving

Operation

 : Rel(E)(XTV,5TV)" = Rel(8)(XTV,5TV)

Q. How much information do we loose?
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Relational Syntax, Revisited

extends

Algebraic Theory
of Syntax

L—

-

Structure

Relational Theory
of Syntax

Term Relation
Algebras

restricts

defines

Y

axiomatise

Internal Calculus
Term Relations

p:FE'V,....2'V) > 3Ving

Operation

Q.
A.

® : Rel(8)(ZTV,27V)" — Rel(8)(7V, 2TV)

How much information do we loose?
No relevant information is lost

Representation Theorem. Any TRA arises as the algebra of term

relations of a syntactic structure.
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Expressiveness
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How Far Can We Go?

Q. How much operational semantics can we within TRAs?

Atoms
aTRA Operators
Contexts
oTRA Substitution
dTRA | Linear Contexts

Enough for rewriting, congruence, equational deduction

What about

program statics and program dynamics?

Behavioural equivalences

Computational interpretation of proofs?



A Computational Pre-Theory of Syntax

Martin-L&f (Constructive Mathematics and Computer Programming)

Intro Forms abs(x.—)
Operators ) majo arg. app,(e,°)
Elim Forms .
minor arg. app, (e, e)
Terms Complete 0 F lam(x.x)
Incomplete X F app,(x, x)

Computation

Gentzen'’s Principle

elim(intro, —)
——

major

21



Intro Forms I1:8—-6& a
Elim Forms E:ExXxE—-E (a,b)
Complete A
& E AA4U mIER
Incomplete 0 ~
Gentzen'’s Principle aC (A A):a
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Intro Forms I1:6—-6& a
Elim Forms E:ExXxE—-E (a,b)
omplete A
Ir(1:c0mpp|ete &o <T—> & AU 04
Gentzen’s Principle aC (AA);a
»TRA
About 25 axioms (but they are decreasing)
Subsumes other TRAs (e.g. a =aU (a, a))
Many examples
= CbN, CbV, FG-CbV w AL
= System T = Continuations
= System Fpu i Object Calculi (g-calculus)

s> Natural Deduction



Expressiveness

Dynamic Semanrics
a® = px. AU {x,A); a; x

Program Equivalence (kleene, Applicative, ...)

— — ,Eo. JE
=KI=a ja

2 =vx.(a%; A »x)/a®
Static Semantics

Peliminary Results (type elaboration as evaluation)

23



Theorem 2 is a congruence: % C

Proof. Prove X";a® C a% A » X"

Oa*;bsc
<0(0a;d);bse
<00a;0atsbse
—a;0a;

e
=a;0a;0bse
=a;0(d;b) ;¢
0G5 K8 b) s
0@, a%) s (K.A) 1B) se
;0@ 3 K,a%) b3 e

a; 00 i K.a) bie
:0(0a*; 0K, Oa') ; Db
=a:0(0a* :K.0a%) 1bse
<a;0¢ @, 0a) bsc
O, A) : (a8, 0a% ; b ;¢
00 (@, a) s bse
;0@ sb;a'[a] ¢

a; 0" b3atse

;00" :06; 0a sc

a; (b ;b

A A A

"

"

WA A A

A A A

n

Qv

(33)

(KD)

[(K19)|since a = Cla
Ob=b

(CQ)

v

[c19)

(&)

)

[(C8) and (K1)|
OK=KandOb=b
Gl

)

(Ke)land (5%) = (b%, &)
(Harmony), since a' < ¥
[§2)

1)

(C17)and Db = band b = b
&

Definition of b*

fl

(E25)]

(H17),

24
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Syntax — Semantics

Syn

points(2l)

Rel(Syn, Syn)

Syntax < Semantics

A
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Syntax — Semantics

Syn Rel(Syn, Syn)

Syntax <« Semantics

points(2l) A

A rich research agenda

2023: Allegories of Symbolic Manipulation
Now: Allegories of Operational Semantics
2025: Allegories of Rewriting

Future Allegories of Static Semantics

Future Allegories of Computational Effects

Future Allegories of Computational Coeffects

Future Allegories of Mechanised Semantics
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