

Fibrations with comprehension and their completion

Andrea Giusto

18 April 2025

Contents

- **2** Comprehension categories
- 3 Lawvere-Ehrhard comprehensions
- **4** From Lawvere-Ehrhard to Jacobs comprehension

Contents

1 Introduction

- **2** Comprehension categories
- 3 Lawvere-Ehrhard comprehensions
- 4 From Lawvere-Ehrhard to Jacobs comprehension

Introduction

Comprehension categories

&

Lawvere-Ehrhard comprehension

Our work: completion of both the structures and comparison between them

Why: better understanding of comprehensions, easier construction of models

Contents

2 Comprehension categories

3 Lawvere-Ehrhard comprehensions

4 From Lawvere-Ehrhard to Jacobs comprehension

Comprehension categories

Definition

A **comprehension category** is a pair (p, χ^p) with $p: \mathcal{E} \to \mathcal{B}$ a fibration and $\chi^p: \mathcal{E} \to \mathcal{B}^2$ such that $\operatorname{cod} \circ \chi^p = p$ and that χ^p preserves cartesian arrows

First examples

Example

The pair (cod, Id_{C^2}) for a category C with pullbacks. More in general their restriction to any full subcategory closed under pullbacks.

Example

The pair (Fam_{Set}, χ) where Fam_{Set} : $Fam(Set) \rightarrow Set$ is the family fibration of sets and

$$\chi(I, \{X_i\}_{i\in I}) := \bigsqcup_{i\in I} X_i \to I$$

Example

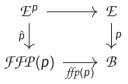
The syntactic fibration associated with a dependent type theory.

Andrea Giusto

Fibrations with comprehension and their completion

Comprehension categories completion

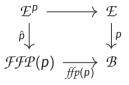
Let *p* be a fibration. Consider the pullback in *Cat*



where ffp(p) is the free fibration with finite fibred products.

Comprehension categories completion

Let *p* be a fibration. Consider the pullback in *Cat*



where ffp(p) is the free fibration with finite fibred products.

Proposition

 \hat{p} can be endowed with the structure of comprehension category.

Sketch of proof

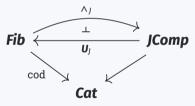
The comprehension functor $\chi^p \colon \mathcal{E}^p \to \mathcal{FFP}(p)^2$ is given by $((X, \vec{A}), A) \mapsto ((X, \vec{A}, A) \to (X, \vec{A}))$, where $A, A_i \in \mathcal{E}_X$ and $X \in \mathcal{B}$.

Comprehension categories completion

The construction extends to a 2-functor \wedge_J .

Theorem

The 2-functor \wedge_J is left bi-adjoint to the forgetful 2-functor \mathbf{U}_{JC} .



Contents

1 Introduction

2 Comprehension categories

3 Lawvere-Ehrhard comprehensions

4 From Lawvere-Ehrhard to Jacobs comprehension

Lawvere-Ehrhard comprehension

Lawvere: hyperdoctrines satisfying Comprehension Schema, i.e. a bifibration whose basis and fibers are cartesian closed, there are a right adjoint to substitution and a right adjoint to the existential quantification of fibered terminals. ¹

Ehrhard: D-categories, i.e. fibrations p with a RARI (right adjoint-right inverse) T and a right adjoint to it C. ²

Jacobs calls them "comprehension categories with unit". ³

¹F.W.Lawvere, Equality in hyperdoctrines and comprehension schema as an adjoint functor, Applications of Categorical Algebra, 1970

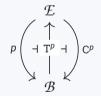
²T.Ehrhard, A categorical semantics of constructions, in Proceedings. Third Annual Symposium on Logic in Computer Science, 1988

³B.Jacobs, Comprehension categories and the semantics of type dependencies, in Theoretical Computer Science, 1993

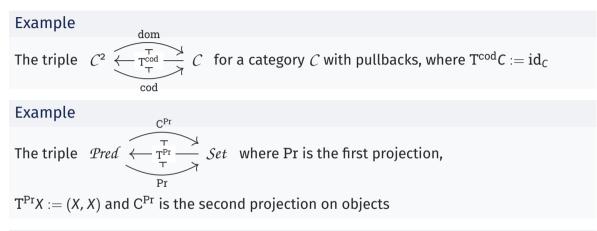
Lawvere-Ehrhard comprehension

Definition

A **fibration with Lawvere-Ehrhard comprehension** is a triple (p, T^p, C^p) where $p: \mathcal{E} \to \mathcal{B}$ is a fibration, $T^p: \mathcal{B} \to \mathcal{E}$ is right adjoint and right inverse (RARI) to p, and C^p is right adjoint to T^p



First examples



Example

The full syntactic fibration associated with a dependent type theory with 1

Andrea Giusto

Fibrations with comprehension and their completion

Another example: the simple fibration

Let ${\mathcal B}$ be a category with finite products \times

Definition

Consider the comonad induced by the functor $T: \mathcal{B} \times \mathcal{B} \to \mathcal{B} \times \mathcal{B}$ defined by

 $T(I,X) = (I, I \times X)$

Denote its coKleisli category as $s(\mathcal{B})$. An arrow $(I, X) \rightarrow (J, Y)$ in $s(\mathcal{B})$ corresponds to arrows $I \rightarrow J$ and $I \times X \rightarrow Y$ in \mathcal{B} .

The first projection on both objects and arrows $s_{\mathcal{B}}: s(\mathcal{B}) \to \mathcal{B}$ is a fibration which is called the **simple fibration** on \mathcal{B}

Lawvere-Ehrhard completion

Let *p* be a fibration with finite fibred products.

Definition

Consider the fibration $q: \mathcal{E}' \rightarrow \mathcal{E}$ obtained by pullback of p along itself.

Consider the comonad induced by the functor $T: \mathcal{E}' \rightarrow \mathcal{E}'$ defined by

 $T(A, B) = (A, A \land B)$

where $A, B \in \mathcal{E}_X$.

Denote its coKleisli category as \mathcal{E}^p .

The completion $\hat{p}: \mathcal{E}^p \to \mathcal{E}$ is the first projection

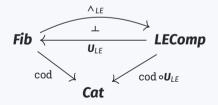
Properties of the completion

Proposition

The completion \wedge_{LE} preserves faithfulness.

Proposition

The completion \wedge_{LE} preserves cartesian arrows of **Fib**.



Completion and simple fibration

There is a relation between \wedge_{LE} and the simple fibration.

Remark

The completion applied to the terminal fibration $!_{\mathcal{B}}: \mathcal{B} \to \mathbf{1}$ yields the simple fibration $s_{\mathcal{B}}: s(\mathcal{B}) \to \mathcal{B}$

Corollary

The completion acts on fibers as the simple fibration construction

Contents

1 Introduction

- **2** Comprehension categories
- **3** Lawvere-Ehrhard comprehensions

4 From Lawvere-Ehrhard to Jacobs comprehension

Lawvere-Ehrhard comprehension implies Jacobs'

Let (p, T, C) be a fibration with Lawvere-Ehrhard comprehension. Define $\chi: \mathcal{E} \to \mathcal{B}^2$ by $\chi A := p\epsilon_A$, where ϵ is the counit of $T \dashv C$.

Theorem

 (p, χ) is a comprehension category. Furthermore the assignation extends to a 2-functor **LE-J**: **LEComp** \rightarrow **JComp**.

Correspondence between terms and proof terms

Let $p: \mathcal{E} \rightarrow \mathcal{B}$ be a fibration with Lawvere-Ehrhard comprehension.

Proposition

The terms of p correspond bijectively to global proof terms via transposition.



Essential image characterization

Theorem

Let $p: \mathcal{E} \to \mathcal{B}$ be a comprehension category together with a RARI T. Then p is in the essential image of **LE-J** if and only if:

Given X in \mathcal{B} , there is a section $s_X: X \to CTX$ of χTX ;

Essential image characterization

Theorem

Let $p: \mathcal{E} \to \mathcal{B}$ be a comprehension category together with a RARI T. Then p is in the essential image of **LE-J** if and only if:

Given X in \mathcal{B} , there is a section $s_X: X \to CTX$ of χTX ;

Given A over X and a section $t: X \to CA$ of χA , there exist a unique vertical arrow $t^{\#}: TX \to A$ such that $Ct^{\#} \circ s_X = t$.

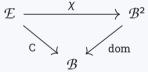
$$X \xrightarrow{s_{\chi}} CTX \xrightarrow{\chiTX} X \qquad TX$$

$$\downarrow \downarrow Ct^{\#} \qquad \downarrow p_{\chi A} \qquad \downarrow \downarrow t^{\#} \qquad \downarrow A$$

An application of the characterization

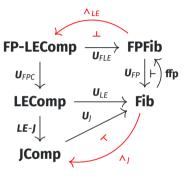
Corollary

Let $p: \mathcal{E} \to \mathcal{B}$ be a full comprehension category with fibred terminals such that χ preserves them. Then p together with dom $\circ \chi$ is a fibration with Lawvere-Ehrhard comprehension.



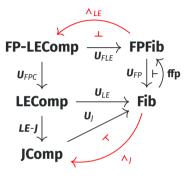
Conclusions

- Bi-adjunction $U_{FLC} \vdash \wedge_{LE}$
- Bi-adjunction **U**_{JC} ⊢ **JComp**
- Characterization of the essential image of LE-J



Conclusions

- Bi-adjunction $U_{FLC} \vdash \wedge_{LE}$
- Bi-adjunction **U**_{JC} ⊢ **JComp**
- Characterization of the essential image of LE-J



Further developments:

- investigate missing universal constructions as a left adjoint to *LE-J* and *U*_{LC}
- investigate monadicity of the constructions we provided
- investigate structures preserved by our constructions

Thank you for your attention!

Università di **Genova**