
A Generalized Logical Framework

András Kovács1, Christian Sattler1

1University of Gothenburg & Chalmers University of Technology

18 Apr 2025, EuroProofNet WG6 meeting, Genoa

1 / 20

Overview

1 Two-level type theories (2LTT):
• metaprogramming over a single model of a single type theory.
• the chosen model is defined outside the system.
• only a second-order (“internal”) view on the model.

2 Generalized logical framework (GLF):
• metaprogramming over any number of models of any number of type theories.
• models are defined inside the system.
• both a first-order/external and a second-order/internal view on each model.
• No substructural modalities.

In this talk:

1 A syntax of GLF + examples + increasing amount of syntactic sugar.

2 A short overview of semantics.

2 / 20

Overview

1 Two-level type theories (2LTT):
• metaprogramming over a single model of a single type theory.
• the chosen model is defined outside the system.
• only a second-order (“internal”) view on the model.

2 Generalized logical framework (GLF):
• metaprogramming over any number of models of any number of type theories.
• models are defined inside the system.
• both a first-order/external and a second-order/internal view on each model.

• No substructural modalities.

In this talk:

1 A syntax of GLF + examples + increasing amount of syntactic sugar.

2 A short overview of semantics.

2 / 20

Overview

1 Two-level type theories (2LTT):
• metaprogramming over a single model of a single type theory.
• the chosen model is defined outside the system.
• only a second-order (“internal”) view on the model.

2 Generalized logical framework (GLF):
• metaprogramming over any number of models of any number of type theories.
• models are defined inside the system.
• both a first-order/external and a second-order/internal view on each model.
• No substructural modalities.

In this talk:

1 A syntax of GLF + examples + increasing amount of syntactic sugar.

2 A short overview of semantics.

2 / 20

Overview

1 Two-level type theories (2LTT):
• metaprogramming over a single model of a single type theory.
• the chosen model is defined outside the system.
• only a second-order (“internal”) view on the model.

2 Generalized logical framework (GLF):
• metaprogramming over any number of models of any number of type theories.
• models are defined inside the system.
• both a first-order/external and a second-order/internal view on each model.
• No substructural modalities.

In this talk:

1 A syntax of GLF + examples + increasing amount of syntactic sugar.

2 A short overview of semantics.

2 / 20

GLF: basic rules

U : U A universe of that supports ETT.

Base : U Type of “base categories”.

1 : Base The terminal category as a base category.

PSh : Base → U Universes of presheaves. Cumulativity: PShi ⊆ U. Supports ETT.

We can only eliminate from PShi to PShi .

Cati : PShi := type of categories in PShi

In : Cati → U “Permission token” for working in presheaves over some C : Cati .

base : InC → Base “Using the permission”.

We use type-in-type everywhere for simplicity, i.e. U : U and PShi : PShi .

3 / 20

Basic things we can do

U : U Base : U 1 : Base PSh : Base → U

Cati : PShi := type of cats in PShi In : Cati → U base : InC → Base

PSh1 is a universe supporting ETT. Semantically, PSh1 is a universe of sets.

We can define some C : Cat1, where Obj(C) : PSh1.

Now, under the assumption of i : InC, we can form the universe PSh(base i), which is
semantically the universe of presheaves over C.

At this point, we have no interesting interaction between PSh1 and PShi .

Syntactic sugar: we’ll omit “base” in the following.

4 / 20

Basic things we can do

U : U Base : U 1 : Base PSh : Base → U

Cati : PShi := type of cats in PShi In : Cati → U base : InC → Base

PSh1 is a universe supporting ETT. Semantically, PSh1 is a universe of sets.

We can define some C : Cat1, where Obj(C) : PSh1.

Now, under the assumption of i : InC, we can form the universe PSh(base i), which is
semantically the universe of presheaves over C.

At this point, we have no interesting interaction between PSh1 and PShi .

Syntactic sugar: we’ll omit “base” in the following.

4 / 20

Basic things we can do

U : U Base : U 1 : Base PSh : Base → U

Cati : PShi := type of cats in PShi In : Cati → U base : InC → Base

PSh1 is a universe supporting ETT. Semantically, PSh1 is a universe of sets.

We can define some C : Cat1, where Obj(C) : PSh1.

Now, under the assumption of i : InC, we can form the universe PSh(base i), which is
semantically the universe of presheaves over C.

At this point, we have no interesting interaction between PSh1 and PShi .

Syntactic sugar: we’ll omit “base” in the following.

4 / 20

Basic things we can do

U : U Base : U 1 : Base PSh : Base → U

Cati : PShi := type of cats in PShi In : Cati → U base : InC → Base

PSh1 is a universe supporting ETT. Semantically, PSh1 is a universe of sets.

We can define some C : Cat1, where Obj(C) : PSh1.

Now, under the assumption of i : InC, we can form the universe PSh(base i), which is
semantically the universe of presheaves over C.

At this point, we have no interesting interaction between PSh1 and PShi .

Syntactic sugar: we’ll omit “base” in the following.

4 / 20

Example: embedding pure lambda calculus

A second-order model of pure LC in PShi consists of:

Tm : PShi

lam : (Tm → Tm) → Tm

–$– : Tm → Tm → Tm

β : lam f $ t = f t

η : lam (λx . t $ x) = t

We define SModi : PShi as the above Σ-type.

5 / 20

Example: embedding pure lambda calculus

A first-order model of pure LC consists of:

• A category of contexts and substitutions with Con : PShi , Sub : Con → Con → PShi and
terminal object •.

• Tm : Con → PShi , plus a term substitution operation.

• A context extension operation –▷ : Con → Con such that Sub Γ (∆ ▷) ≃ Sub Γ∆× TmΓ.

• A natural isomorphism Tm (Γ ▷) ≃ TmΓ whose components are λ and application.

We define FModi : PShi as the above Σ-type.

FMod is mechanically derivable from SMod.1

1Ambrus Kaposi & Szumi Xie: Second-Order Generalised Algebraic Theories.
6 / 20

Example: embedding pure lambda calculus

GLF rule

Assuming M : FModi and j : InM, we have Sj : SModj .
(In “InM” we implicitly convert M to its underlying category.)

Now we have a 2LTT inside PShj :
• ETT type formers in PShj comprise the outer level.
• Sj comprises the inner level.

Y-combinator as example:

YC : TmSj

YC := lamSj (λ f . (lamSj (λx . x $Sj x)) $Sj (lamSj (λx . f $Sj (x $Sj x))))

With a reasonable amount of sugar:

YC : TmSj

YC := lam f . (lam x . x x) (lam x . f (x x))

7 / 20

Example: embedding pure lambda calculus

GLF rule

Assuming M : FModi and j : InM, we have Sj : SModj .
(In “InM” we implicitly convert M to its underlying category.)

Now we have a 2LTT inside PShj :
• ETT type formers in PShj comprise the outer level.
• Sj comprises the inner level.

Y-combinator as example:

YC : TmSj

YC := lamSj (λ f . (lamSj (λx . x $Sj x)) $Sj (lamSj (λx . f $Sj (x $Sj x))))

With a reasonable amount of sugar:

YC : TmSj

YC := lam f . (lam x . x x) (lam x . f (x x))

7 / 20

Example: embedding pure lambda calculus

GLF rule

Assuming M : FModi and j : InM, we have Sj : SModj .
(In “InM” we implicitly convert M to its underlying category.)

Now we have a 2LTT inside PShj :
• ETT type formers in PShj comprise the outer level.
• Sj comprises the inner level.

Y-combinator as example:

YC : TmSj

YC := lamSj (λ f . (lamSj (λx . x $Sj x)) $Sj (lamSj (λx . f $Sj (x $Sj x))))

With a reasonable amount of sugar:

YC : TmSj

YC := lam f . (lam x . x x) (lam x . f (x x))

7 / 20

Example: embedding pure lambda calculus

GLF rule

Assuming M : FModi and j : InM, we have Sj : SModj .
(In “InM” we implicitly convert M to its underlying category.)

Now we have a 2LTT inside PShj :
• ETT type formers in PShj comprise the outer level.
• Sj comprises the inner level.

Y-combinator as example:

YC : TmSj

YC := lamSj (λ f . (lamSj (λx . x $Sj x)) $Sj (lamSj (λx . f $Sj (x $Sj x))))

With a reasonable amount of sugar:

YC : TmSj

YC := lam f . (lam x . x x) (lam x . f (x x))
7 / 20

• More generally, we have the previous GLF rule for every second-order generalized
algebraic theory.

• Hence: all 2LTTs are syntactic fragments of GLF.

• (For each 2LTT, the semantics of GLF restricts to the standard presheaf semantics of the
2LTT.)

8 / 20

• More generally, we have the previous GLF rule for every second-order generalized
algebraic theory.

• Hence: all 2LTTs are syntactic fragments of GLF.

• (For each 2LTT, the semantics of GLF restricts to the standard presheaf semantics of the
2LTT.)

8 / 20

• More generally, we have the previous GLF rule for every second-order generalized
algebraic theory.

• Hence: all 2LTTs are syntactic fragments of GLF.

• (For each 2LTT, the semantics of GLF restricts to the standard presheaf semantics of the
2LTT.)

8 / 20

Yoneda: conversion between internal & external views

GLF rule: Yoneda embedding for pure LC

Assuming M : FModi and writing ≃ for definitional isomorphism, we have

Y : ConM → ((j : InM) → PShj)

Y : SubM Γ∆ ≃ ((j : InM) → Y Γ j → Y∆ j)

Y : TmM Γ ≃ ((j : InM) → Y Γ j → TmSj)

such that Y preserves empty context and context extension:

Y • j ≃ ⊤
Y (Γ ▷) j ≃ Y Γ j × TmSj

and Y preserves all other structure strictly.

Notation: we write Λ for inverses of Y.
9 / 20

LC examples, sugar

Y and Λ allow ad-hoc switching between first-order and second-order notation. Let’s redefine
some operations using second-order notation:

id : SubM Γ Γ comp : SubM ∆Θ → SubM Γ∆ → SubM ΓΘ

id := Λ (λ j γ. γ) compσ δ := Λ (λ j γ.Y σ (Y δ γ j) j)

With reasonable amount of sugar:

id := Λ γ. γ compσ δ := Λ γ.Y σ (Y δ γ)

Or even:

compσ δ := Λ γ. σ (δ γ)

Example for “pattern matching” notation:

p : SubM (Γ ▷) Γ

p := Λ (γ, α). γ Note: Y (Γ ▷) ≃ Y Γ× TmSj

10 / 20

LC examples, sugar

Y and Λ allow ad-hoc switching between first-order and second-order notation. Let’s redefine
some operations using second-order notation:

id : SubM Γ Γ comp : SubM ∆Θ → SubM Γ∆ → SubM ΓΘ

id := Λ (λ j γ. γ) compσ δ := Λ (λ j γ.Y σ (Y δ γ j) j)

With reasonable amount of sugar:

id := Λ γ. γ compσ δ := Λ γ.Y σ (Y δ γ)

Or even:

compσ δ := Λ γ. σ (δ γ)

Example for “pattern matching” notation:

p : SubM (Γ ▷) Γ

p := Λ (γ, α). γ Note: Y (Γ ▷) ≃ Y Γ× TmSj

10 / 20

LC examples, sugar

Y and Λ allow ad-hoc switching between first-order and second-order notation. Let’s redefine
some operations using second-order notation:

id : SubM Γ Γ comp : SubM ∆Θ → SubM Γ∆ → SubM ΓΘ

id := Λ (λ j γ. γ) compσ δ := Λ (λ j γ.Y σ (Y δ γ j) j)

With reasonable amount of sugar:

id := Λ γ. γ compσ δ := Λ γ.Y σ (Y δ γ)

Or even:

compσ δ := Λ γ. σ (δ γ)

Example for “pattern matching” notation:

p : SubM (Γ ▷) Γ

p := Λ (γ, α). γ Note: Y (Γ ▷) ≃ Y Γ× TmSj

10 / 20

LC examples, sugar

Y and Λ allow ad-hoc switching between first-order and second-order notation. Let’s redefine
some operations using second-order notation:

id : SubM Γ Γ comp : SubM ∆Θ → SubM Γ∆ → SubM ΓΘ

id := Λ (λ j γ. γ) compσ δ := Λ (λ j γ.Y σ (Y δ γ j) j)

With reasonable amount of sugar:

id := Λ γ. γ compσ δ := Λ γ.Y σ (Y δ γ)

Or even:

compσ δ := Λ γ. σ (δ γ)

Example for “pattern matching” notation:

p : SubM (Γ ▷) Γ

p := Λ (γ, α). γ Note: Y (Γ ▷) ≃ Y Γ× TmSj

10 / 20

Second-order notation

• When working with CwF-s, De Bruijn indices and substitutions can be hard to read.

• Handwaved “named” binders in CwFs have been used in literature (e.g. by me).

• GLF provides a rigorous implementation of such notation.

• For many use cases, we can use second-order notation and just forget about the
first-order combinators.

11 / 20

Embedding dependent type theories

In a first order model, we have:

Con : PShi

Sub : Con → Con → PShi

Ty : Con → PShi

Tm : (Γ : Con) → Ty Γ → PShi

...

In a second order model, we have

Ty : PShi

Tm : Ty → PShi

...

Yoneda embedding:

Y : ConM → ((j : InM) → PShj)

Y : SubM Γ∆ ≃ ((j : InM) → Y Γ j → Y∆ j)

Y : TyM Γ ≃ ((j : InM) → Y Γ j → TySj)

Y : TmM ΓA ≃ ((j : InM) → (γ : Y Γ j) → TmSj (YA j γ))

12 / 20

Embedding dependent type theories

In a first order model, we have:

Con : PShi

Sub : Con → Con → PShi

Ty : Con → PShi

Tm : (Γ : Con) → Ty Γ → PShi

...

In a second order model, we have

Ty : PShi

Tm : Ty → PShi

...

Yoneda embedding:

Y : ConM → ((j : InM) → PShj)

Y : SubM Γ∆ ≃ ((j : InM) → Y Γ j → Y∆ j)

Y : TyM Γ ≃ ((j : InM) → Y Γ j → TySj)

Y : TmM ΓA ≃ ((j : InM) → (γ : Y Γ j) → TmSj (YA j γ))

12 / 20

Embedding dependent type theories

Sugar for contexts:

(Γ ▷ A ▷ B) : ConM is equal to Γ ▷ (Λ γ.YA γ) ▷ (Λ (γ, α).YB (γ, α))

This suggests the notation:

(γ : Γ, α : YA γ, β : YB (γ, α)) : ConM

With implicit Y:
(γ : Γ, α : A γ, β : B (γ, α)) : ConM

Sugar for TmM . We have

TmM (Γ ▷ A ▷ B)C = TmM (Γ ▷ A ▷ B) (Λ (γ, α, β).C (γ, α, β))

which suggests the notation

TmM (γ : Γ, α : A γ, β : B (γ, α)) (C (γ, α, β))

13 / 20

Embedding dependent type theories

Sugar for contexts:

(Γ ▷ A ▷ B) : ConM is equal to Γ ▷ (Λ γ.YA γ) ▷ (Λ (γ, α).YB (γ, α))

This suggests the notation:

(γ : Γ, α : YA γ, β : YB (γ, α)) : ConM

With implicit Y:
(γ : Γ, α : A γ, β : B (γ, α)) : ConM

Sugar for TmM . We have

TmM (Γ ▷ A ▷ B)C = TmM (Γ ▷ A ▷ B) (Λ (γ, α, β).C (γ, α, β))

which suggests the notation

TmM (γ : Γ, α : A γ, β : B (γ, α)) (C (γ, α, β))

13 / 20

Embedding dependent type theories

Sugar for contexts:

(Γ ▷ A ▷ B) : ConM is equal to Γ ▷ (Λ γ.YA γ) ▷ (Λ (γ, α).YB (γ, α))

This suggests the notation:

(γ : Γ, α : YA γ, β : YB (γ, α)) : ConM

With implicit Y:
(γ : Γ, α : A γ, β : B (γ, α)) : ConM

Sugar for TmM . We have

TmM (Γ ▷ A ▷ B)C = TmM (Γ ▷ A ▷ B) (Λ (γ, α, β).C (γ, α, β))

which suggests the notation

TmM (γ : Γ, α : A γ, β : B (γ, α)) (C (γ, α, β))

13 / 20

Embedding dependent type theories

Example: a construction which looks awful in explicit CwF notation2

Con◦ Γ := Ty (F Γ)

Ty◦ Γ◦ A := Ty (F Γ ▷ Γ◦ ▷ F A[p])

Tm◦ Γ◦ A◦ t := Tm (F Γ ▷ Γ◦) (A◦[id, F t[p]))

Γ◦ ▷◦ A◦ := Σ(Γ◦[p ◦ F▷.1])(A
◦[p ◦ F▷.1 ◦ p, q, q[F▷.1 ◦ p]])

...

but is reasonable in sugary GLF notation:
Con◦ Γ := Ty (γ : F Γ)

Ty◦ Γ◦ A := Ty (γ : F Γ, γ◦ : Γ◦ γ, α : F A γ)

Tm◦ Γ◦ A◦ t := Tm (γ : F Γ, γ◦ : Γ◦ γ) (A◦ (γ, γ◦, F t γ))

Γ◦ ▷◦ A◦ := Λ (F▷.2(γ, α)).Σ(γ
◦ : Γ◦ γ)× A◦ (γ, γ◦, α)

It’s a fair amount of sugar, but we can always rigorously desugar when in doubt!
2Kaposi, Huber, Sattler: Gluing for Type Theory, Section 5

14 / 20

General GLF rules

For every second-order generalized algebraic signature T:
• We compute (externally to GLF) FMod(T, i) and SMod(T, i).

• We specify that GLF has S(T, i).

• We specify that GLF has Yoneda embedding.

It’s not simple to compute the specification of Yoneda embedding from T! Doing this is part
of future work.

Also, these are not all rules that we might want to have!

• For example: conversion between internal and external natural numbers, i.e.
Ni ≃ ((j : InM) → Nj) where M : Cati .

• This can be broadly generalized to an isomorphism of “external” and “internal” 2LTT
models.

• But we’re not sure yet which rules are the best to enshrine in GLF syntax.

15 / 20

General GLF rules

For every second-order generalized algebraic signature T:
• We compute (externally to GLF) FMod(T, i) and SMod(T, i).

• We specify that GLF has S(T, i).

• We specify that GLF has Yoneda embedding.

It’s not simple to compute the specification of Yoneda embedding from T! Doing this is part
of future work.

Also, these are not all rules that we might want to have!

• For example: conversion between internal and external natural numbers, i.e.
Ni ≃ ((j : InM) → Nj) where M : Cati .

• This can be broadly generalized to an isomorphism of “external” and “internal” 2LTT
models.

• But we’re not sure yet which rules are the best to enshrine in GLF syntax.

15 / 20

Semantics

Each PShi should be an universe of internal presheaves over an internal category.

We should work with Cat somehow, but there are issues with that:

• There’s no general Π.

• Π-types of presheaves and universes of presheaves are not stable under reindexing by
arbitrary functors.

In GLF, we can’t do any interesting categorical reasoning! Base and In are purely for managing
internal/external languages.

GLF contexts are modeled as certain trees of categories:

• Each node represents a presheaf universe, each edge represents an internal/external
switch.

• Tree morphisms only have non-trivial action on discrete data in trees.

16 / 20

Semantics

Each PShi should be an universe of internal presheaves over an internal category.

We should work with Cat somehow, but there are issues with that:

• There’s no general Π.

• Π-types of presheaves and universes of presheaves are not stable under reindexing by
arbitrary functors.

In GLF, we can’t do any interesting categorical reasoning! Base and In are purely for managing
internal/external languages.

GLF contexts are modeled as certain trees of categories:

• Each node represents a presheaf universe, each edge represents an internal/external
switch.

• Tree morphisms only have non-trivial action on discrete data in trees.

16 / 20

Semantics

Each PShi should be an universe of internal presheaves over an internal category.

We should work with Cat somehow, but there are issues with that:

• There’s no general Π.

• Π-types of presheaves and universes of presheaves are not stable under reindexing by
arbitrary functors.

In GLF, we can’t do any interesting categorical reasoning! Base and In are purely for managing
internal/external languages.

GLF contexts are modeled as certain trees of categories:

• Each node represents a presheaf universe, each edge represents an internal/external
switch.

• Tree morphisms only have non-trivial action on discrete data in trees.

16 / 20

Semantics

Each PShi should be an universe of internal presheaves over an internal category.

We should work with Cat somehow, but there are issues with that:

• There’s no general Π.

• Π-types of presheaves and universes of presheaves are not stable under reindexing by
arbitrary functors.

In GLF, we can’t do any interesting categorical reasoning! Base and In are purely for managing
internal/external languages.

GLF contexts are modeled as certain trees of categories:

• Each node represents a presheaf universe, each edge represents an internal/external
switch.

• Tree morphisms only have non-trivial action on discrete data in trees.

16 / 20

Semantics

Notation:
• For a category C and a split fibration A over it, we write C ▷ A for the total category.
• For a presheaf A, we write DiscA for the derived discrete fibration.

Definition. A category telescope is either the terminal category, or it is (inductively) of the
form C ▷ DiscA ▷ B where C is a category telescope. We write C : CatTel for a category
telescope.

Definition. A tree of categories is inductively defined as:

dataTree (B : CatTel) : Setwhere

node : (Γ : PShB)

→ (n : N)
→ (C : Fin n → Fib (B ▷ Disc Γ))

→ ((i : Fin n) → Tree (B ▷ Disc Γ ▷ C i))

→ TreeB 17 / 20

Semantics

node : (Γ : PShB)(n : N)(C : Fin n → Fib (B ▷ Disc Γ)) → ((i : Fin n) → Tree (B ▷ Disc Γ ▷ C i))

→ TreeB

A GLF context is an element of Tree 1. We give some examples for semantic contexts. We
have Ni : PShi . We use – ▷ – for “context extension” in presheaves as well.

• := node 1 0 [] []

(• ▷ N1) := node (1 ▷ N) 0 [] []
(• ▷ N1 ▷ InC) := node (1 ▷ N) 1 [C] [node 1 0 [] []]

(• ▷ N1 ▷ i : InC ▷ N(base i)) := node (1 ▷ N) 1 [C] [node (1 ▷ N) 0 [] []]

• A Base in context Γ points to a node in Γ.
• An InC in context Γ points to a subtree of a node.
• Extending a context with A : PShi extends the presheaf in node i .
• Extending a context with j : InC for C : Cati adds a new subtree at node i .

18 / 20

Semantics

node : (Γ : PShB)(n : N)(C : Fin n → Fib (B ▷ Disc Γ)) → ((i : Fin n) → Tree (B ▷ Disc Γ ▷ C i))

→ TreeB

A GLF context is an element of Tree 1. We give some examples for semantic contexts. We
have Ni : PShi . We use – ▷ – for “context extension” in presheaves as well.

• := node 1 0 [] []

(• ▷ N1) := node (1 ▷ N) 0 [] []
(• ▷ N1 ▷ InC) := node (1 ▷ N) 1 [C] [node 1 0 [] []]

(• ▷ N1 ▷ i : InC ▷ N(base i)) := node (1 ▷ N) 1 [C] [node (1 ▷ N) 0 [] []]

• A Base in context Γ points to a node in Γ.
• An InC in context Γ points to a subtree of a node.
• Extending a context with A : PShi extends the presheaf in node i .
• Extending a context with j : InC for C : Cati adds a new subtree at node i .

18 / 20

Semantics

node : (Γ : PShB)(n : N)(C : Fin n → Fib (B ▷ Disc Γ)) → ((i : Fin n) → Tree (B ▷ Disc Γ ▷ C i))

→ TreeB

Tree morphisms are defined inductively & levelwise, containing
• natural transformations between Γ : PShB components
• functions for reindexing subtrees of type Fin n → Finm

such that the non-discrete fibrations are preserved.

A semantic PShi in context Γ is a presheaf over the category given by the path from the root
of Γ to the node i .

19 / 20

Further work

• Decide on the exact rules of GLF.

• Compute the specification of Yoneda embedding from SOGAT signatures, define
semantics in this generality.

• Investigate syntactic metatheory.
• For computer implementation, we need to wean ourselves off extensional TT!

• (but informal extensional GLF is already useful)

• Definitional isos for Y are unusual in syntax.
• Simpler syntactic fragments of GLF could be useful & easier to implement.

Thank you!

Shameless bonus advertisement: 40th Agda implementors’ meeting, Budapest, May 26-31, free
participation, https://wiki.portal.chalmers.se/agda/Main/AIMXXXX

20 / 20

https://wiki.portal.chalmers.se/agda/Main/AIMXXXX

Further work

• Decide on the exact rules of GLF.

• Compute the specification of Yoneda embedding from SOGAT signatures, define
semantics in this generality.

• Investigate syntactic metatheory.
• For computer implementation, we need to wean ourselves off extensional TT!

• (but informal extensional GLF is already useful)

• Definitional isos for Y are unusual in syntax.
• Simpler syntactic fragments of GLF could be useful & easier to implement.

Thank you!

Shameless bonus advertisement: 40th Agda implementors’ meeting, Budapest, May 26-31, free
participation, https://wiki.portal.chalmers.se/agda/Main/AIMXXXX

20 / 20

https://wiki.portal.chalmers.se/agda/Main/AIMXXXX

