

Comprehension categories

Types as maps

Types as primitive

Conclusion

# Comparing semantic frameworks for dependently-sorted algebraic theories

Benedikt Ahrens, Peter LeFanu Lumsdaine, Paige Randall North

published in APLAS 2024 arXiv:2412.19946

Comprehension categories

Types as maps

Types as primitive

Conclusion

## Outline

Overview

Comprehension categories

Types as maps

Types as primitive

Conclusion

| Overview |  |
|----------|--|
| 0000     |  |

Types as primitive

Conclusion

## Summary

#### Goal

Give precise relationship between different categorical structures used to interpret dependent types such as

- display map categories,
- comprehension categories,
- categories with families,
- contextual categories...

#### Motivation

- 1. Literature on existing notions is scattered and incomplete
- 2. New notions are frequently developed
- 3. Most of these are 'the same' or nice subcategories of others, but we wanted to write down the relationships clearly.



Types as primitive

Conclusion

## Methodology

Our approach:

- 1. Comprehension categories are the most general notion
- 2. Identify other notions as constituting certain subcategories of comprehension categories
- 3. Focus on the 2-categories of these notions.
- 4. But we also give a strict/1-categorical analysis

Types as primitive

## Why 2-categories?

There were previous analyses on the 1-categorical level, e.g., by Javier Blanco and Martin Hofmann.

But we prefer a 2-categorical analysis:

- These are categories with structure, so they naturally form 2-categories.
- Want to have pseudo (weak) morphisms between these categories with structure, and need 2-morphisms to 'control' these.
  - These arise naturally: e.g., after applying Hofmann's strictification

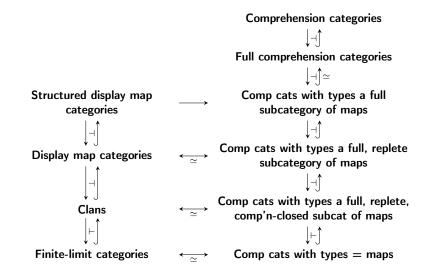
Comprehension categories

Types as maps

Types as primitive

Conclusion

### Frameworks with types as certain maps





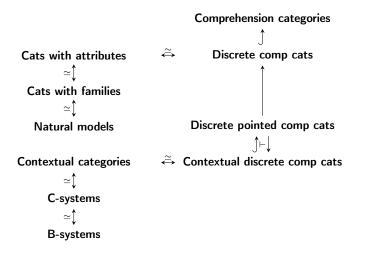
Comprehension categories

Types as maps

Types as primitive

Conclusion

## Frameworks with types as primitive



Comprehension categories

Types as maps

Types as primitive

Conclusion

## Outline

Overview

#### Comprehension categories

Types as maps

Types as primitive

Conclusion

Types as primitive

Conclusion

## Comprehension categories

#### Definition

#### A comprehension category consists of

- 1. a category  $\mathcal{C}$  (whose objects we call **contexts**);
- 2. a fibration  $\mathcal{T} \xrightarrow{p} \mathcal{C}$  (of types); and
- 3. a functor  $\mathcal{T} \xrightarrow{\chi} \mathcal{C}^{\rightarrow}$  (comprehension); such that
- 4.  $\chi$  lies strictly over C, in that  $\operatorname{cod} \circ \chi = p$ , and is cartesian, i.e. sends *p*-cartesian maps to pullback squares.





Comprehension categories

Types as maps

Types as primitive

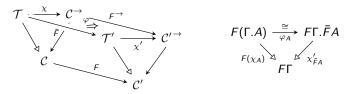
Conclusion

## Pseudo maps of comprehension categories

#### Definition

A pseudo map  $(F, \overline{F}, \varphi) : (\mathcal{C}, \mathcal{T}, p, \chi) \longrightarrow (\mathcal{C}', \mathcal{T}', p', \chi')$  is:

- 1. a functor  $F : \mathcal{C} \longrightarrow \mathcal{C}'$ ;
- 2. a functor  $\overline{F} : \mathcal{T} \longrightarrow \mathcal{T}'$  lying (strictly) over F, and sending *p*-cartesian maps to *p*'-cartesian maps; and
- 3. a natural isomorphism  $\varphi: \chi' \bar{F} \cong F^{\rightarrow} \chi$  lying (strictly) over the identity natural transformation on F
- A strict map is a pseudo map where  $\varphi$  is the identity.



Types as primitive

Conclusion

## Summary: comprehension categories

 Comprehension categories, pseudo maps (resp. strict maps), and transformations form a 2-category CompCat (resp. CompCat<sup>str2</sup>).

#### Why (not) use comprehension categories?

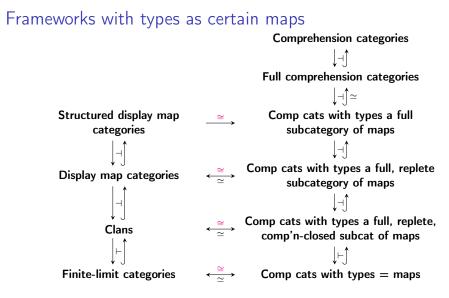
- + versatile
- morphisms of types don't mean anything

Comprehension categories

Types as maps

Types as primitive

Conclusion



**NB!** The right-hand sides of each  $\cong$  is the 2-category with strict 1-morphisms.

Comprehension categories

Types as maps

Types as primitive

Conclusion

## Outline

Overview

Comprehension categories

Types as maps

Types as primitive

Conclusion

## Display map categories

#### Definition

#### A display map category consists of

- 1. a category  $\ensuremath{\mathcal{C}}$  together with
- 2. a replete (i.e. isomorphism-invariant) subclass  $\mathcal{D} \subseteq \operatorname{mor}(\mathcal{C})$  of maps (called *display maps* and written  $\longrightarrow$ )
- 3. such that display maps pull back along arbitrary maps:

#### Why (not) use display map categories?

- $+ \,$  easy to construct from mathematical objects
- relatively far removed from syntax

## Structured display map categories

#### Definition

A structured display map category (sDMC) consists of

- 1. a category  $\ensuremath{\mathcal{C}}$  together with
- a subclass D ⊆ mor(C) of maps (called *display maps* and written →)
- 3. such that display maps pull back along arbitrary maps:

$$\begin{array}{c} \cdot & - \rightarrow \cdot \\ f^* d \downarrow^{-} & \downarrow_{d} \\ \cdot & \xrightarrow{\nabla} & \cdot \end{array}$$

$$(1)$$

A **morphism** of sDMCs is a functor preserving display maps and pullbacks.

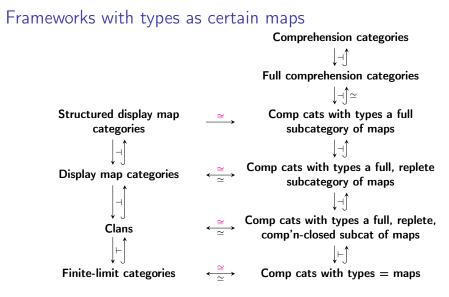


Comprehension categories

Types as maps

Types as primitive

Conclusion



**NB!** The right-hand sides of each  $\cong$  is the 2-category with strict 1-morphisms.



Types as maps 000●0 Conclusion

## Clans

#### Definition

A display map category is rooted if

- $1. \ \mathcal{C}$  has a terminal object, and
- all morphisms to the terminal object are composites of display maps and isomorphisms. (In the non-structured case, repleteness renders the isomorphisms redundant.)

#### Definition

A clan is a rooted display map category (C, D) where D is closed under composition and contains all identities.

#### Why (not) use clans?

- $\ + \$  easy to construct from mathematical objects
- relatively far removed from syntax

Types as maps 0000● Types as primitive

Conclusion

## Finite-limit categories

#### Construction

Every finite-limit category C forms a clan (C, mor(C)), so

#### $\textbf{Finite-limit categories} \hookrightarrow \textbf{Clans}$

This has a right adjoint given by the following:

#### Construction

Given a clan  $(\mathcal{C}, \mathcal{D})$ , call an object  $X \in \mathcal{C}$  separated if  $X \to X \times X$  is a display map.

The full subcategory of separated objects is a finite-limit category.

Comprehension categories

Types as maps

Types as primitive

Conclusion

## Outline

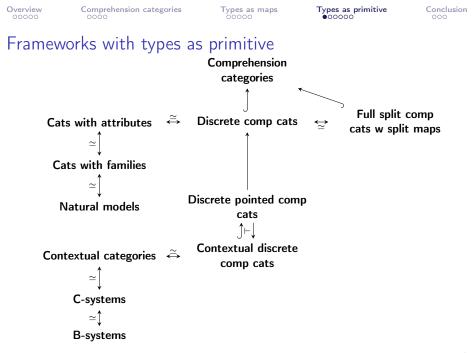
Overview

Comprehension categories

Types as maps

Types as primitive

Conclusion



Types as primitive

Conclusion

## Categories with families

#### Definition

#### A category with families consists of

- 1. a category  $\mathcal{C}$ ;
- 2. a presheaf  $Ty : \mathcal{C}^{op} \longrightarrow Set;$
- 3. a presheaf  $Tm:\int_{\mathcal{C}}Ty\longrightarrow \mathsf{Set};$  and
- 4. for each  $\Gamma \in C$ ,  $A \in Ty(\Gamma)$ , an object  $\Gamma.A$  and map  $p_A : \Gamma.A \longrightarrow \Gamma$  representing  $Tm(\Gamma, A)$ .

#### Why (not) use categories with families?

+ relatively close to syntax

## Categories with families

#### Definition

- A strict map<sup>a</sup> is a functor and natural transformations preserving Γ.A, p<sub>A</sub> on the nose.
  - The 1-category whose 1-cells are strict maps is equivalent to the 1-category ofdiscrete comprehension categories.

• A weak map<sup>b</sup> preserves  $\Gamma$ . A,  $p_A$  only up to isomorphism.

The 2-category whose 1-cells are weak maps is equivalent to the 2-category of full, split comprehension categories with split maps.

• A pseudo map<sup>c</sup> preserves reindexing only up to isomorphism.

The 2-category whose 1-cells are pseudo maps is equivalent to the 2-category of full, split discrete comprehension categories.

<sup>a</sup>Dybjer

<sup>b</sup>Birkedal, Clouston, Mannaa, Møgelberg, Pitts, Spitters <sup>c</sup>Clairambault, Dybjer

## Contextual categories

#### Definition

#### A contextual category consists of

- 1. a category  ${\mathcal C}$  equipped with a distinguished terminal object 1;
- 2. a tree structure on ob C with root 1;
- for each non-root object A, a "projection" p<sub>A</sub> : A → par(A) from A to its parent;
- pullbacks of projections along arbitrary maps to projections f\*p<sub>A</sub> = p<sub>f\*A</sub>, strictly functorial in that 1\*A = A, (fg)\*A = g\*f\*A.

#### Why (not) use contextual categories?

- + very close to syntax
- difficult to construct from mathematical objects

Types as primitive

Conclusion

## Contextual categories

#### Definition

Given a comprehension category ( $C, T, p, \chi$ ), the **contextual slice**  $C \notin \Gamma$  is the comprehension category whose underlying category

► has objects finite sequences  $(A_0, ..., A_{n-1})$  in which  $A_k \in \mathcal{T}_{\Gamma.A_0...A_{k-1}}$ , for each  $0 \le k < n$ 

▶ has morphisms inherited from C.

The comprehension category  $(\mathcal{C}, \mathcal{T}, p, \chi)$  is **contextual** if  $\mathcal{C}$  has a terminal object 1 and the projection  $\mathcal{C} \ddagger 1 \longrightarrow \mathcal{C}$  is bijective on objects.

#### Theorem

The 1-category of contextual comprehension categories and strict maps is equivalent to the 2-category of contextual comprehension categories and pseudo maps.

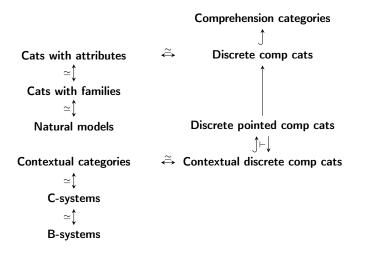
Comprehension categories

Types as maps

Types as primitive

Conclusion

#### Frameworks with types as primitive



Comprehension categories

Types as maps

Types as primitive

Conclusion

## Outline

Overview

Comprehension categories

Types as maps

Types as primitive

Conclusion

Types as maps

Types as primitive

Conclusion

## Summary

- Comprehension categories encompass other notions, which can be characterized via structure on comprehension categories
- Comparison on the level of 2-categories, considering pseudo-maps instead of strict maps
- Most notions are well-behaved in that they are equivalent to 2-categories of certain comprehension categories

Types as maps

Types as primitive

Conclusion

## Future work

A textbook?

- An axiomatization?
  - Universal properties giving the equivalences?
  - Strict vs. weak models of 2-theories?

Comprehension categories

Types as maps

Types as primitive

Conclusion

## Thank you!