
1/18

Towards Resolving Type Inconsistencies in
Transparent Intensional Logic

WG6 meeting in Genova

Samuel Novotný and Ján Perháč

Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics

Technical University of Košice
Slovakia

April 18, 2025

2/18

Transparent intensional logic Problem Solution Questions

Transparent intensional logic (TIL)

Theoretical foundations
Author: Pavel Tichy and significant contributors: Pavel
Materna, Marie Duzi
Procedural-semantic partial hyperintensional typed
λ-calculus
Syntax – constructions, that is, abstract procedures
(computations) constructing the denotation of a linguistic
expression.

C ::= x | 0X | λx . . . xC | [C . . . C] | 1C | 2C

X ::= O | C
(GTIL)

Main concept – distinguish between constructions and values
constructed by them

3/18

Transparent intensional logic Problem Solution Questions

Transparent intensional logic

Theoretical foundations
Two level Type System – Tichý’s TT = Church’s Simple Type
Theory + a modification of Russell’s Ramified Type Theory

elementary types BO = o, ι, τ, ω, types of constructions
∗1, ∗2 . . . ∗n

compound types built on functions over BO (first order types)
and the set of constructions C (higher order types – types of
constructions).

Typing relations
Γ | ∆ ⊢ X/α Γ | ∆ ⊢ C → α

Γ typing context for unbounded variables, ∆ typing context for
non-constructions

4/18

Transparent intensional logic Problem Solution Questions

Transparent intensional logic

Typing rules
x → α ∈ Γ (T-var)

Γ | ∆ ⊢ x → α

Γ | ∆ ⊢ X/α
(T-triv)

Γ | ∆ ⊢ 0X → α

Γ | ∆ ⊢ C → α
(T-prog)

Γ | ∆ ⊢ C/∗n

X/α ∈ ∆
(T-nconstr)

Γ | ∆ ⊢ X/α

Γ | ∆ ⊢ C0 → (α0α1 . . . αn)
Γ | ∆ ⊢ C1 → α1. . .
Γ | ∆ ⊢ Cn → αn (T-comp)

Γ | ∆ ⊢ [C0C1 . . . Cn] → α0

Γ, x1 → α1, x2 → α2, . . . , xn → αn | ∆ ⊢ C → α0 (T-clos)
Γ | ∆ ⊢ λx1x2 . . . xnC → (α0α1α2 . . . αn)

Γ | ∆ ⊢ X → α
(T-exec)

Γ | ∆ ⊢ 1X → α

Γ | ∆ ⊢ X → ∗n (T-2exec)
Γ | ∆ ⊢ 2X → α

5/18

Transparent intensional logic Problem Solution Questions

Transparent intensional logic

Standard application domain
Logical analysis of natural language.
The main goal is to express the meaning (Frege’s sense) of
natural language expressions in mathematically precise terms.
Three-step analysis:

1 Type analysis,
2 Synthesis,
3 Type checking.

6/18

Transparent intensional logic Problem Solution Questions

TIL Application Example

Example: Logical analysis of the language expression: ”2+2÷0”
1 Type analysis

∆ = {2, 0/τ ; +, ÷/(τττ)}
2 Synthesis

[0 + 02 [0 ÷ 02 00]] →v

3 Type checking

+/(τττ) ∈ ∆

∆ ⊢ +/(τττ)

∆ ⊢ 0+ → (τττ)

2/τ ∈ ∆

∆ ⊢ 2/τ

∆ ⊢ 02 → τ

÷/(τττ) ∈ ∆

∆ ⊢ ÷/(τττ)

∆ ⊢ 0÷ → (τττ)

2/τ ∈ ∆

∆ ⊢ 2/τ

∆ ⊢ 02 → τ

0/τ ∈ ∆

∆ ⊢ 0/τ

∆ ⊢ 00 → τ

∆ ⊢ [0 ÷ 02 00]

∆ ⊢ [0 + 02 [0 ÷ 02 00]]

Figure: Type Checking Tree

Question
Should improperness always be strictly propagated ↑ ?

7/18

Transparent intensional logic Problem Solution Questions

TIL Application Example

Example: Logical analysis of the language expression: ”2+2÷0 is
undefined”

1 Type analysis
∆ = {2, 0/τ ; +, ÷/(τττ); Undefined/(oτ)}

2 Synthesis
[0Undefined [0 + 02 [0 ÷ 02 00]]] →v

3 Type checking

Undefined/(oτ) ∈ ∆

∆ ⊢ Undefined/(oτ)

∆ ⊢ 0Undefined → (oτ)

...
∆ ⊢ [0 + 02 [0 ÷ 02 00]]

∆ ⊢ [0Undefined [0 + 02 [0 ÷ 02 00]]]

Figure: Type Checking Tree

Observation
That is not correct analysis of this natural language expression.

8/18

Transparent intensional logic Problem Solution Questions

TIL Application Example

Example: Correct logical analysis of the language expression:
”2+2÷0 is not defined”

1 Type analysis
∆ = {2, 0/τ ; +, ÷/(τττ); Improper/(o∗n)}

2 Synthesis
[0Improper 0[0 + 02 [0 ÷ 02 00]]] →v T

3 Type checking

Improper/(o∗n) ∈ ∆

∆ ⊢ Improper/(o∗n)

∆ ⊢ 0Improper → (o∗n) ∆ ⊢ 0[0 + 02 [0 ÷ 02 00]]

∆ ⊢ [0Improper 0[0 + 02 [0 ÷ 02 00]]]

Figure: Type Checking Tree

9/18

Transparent intensional logic Problem Solution Questions

β-reduction

Strategies
In TIL β-reduction strategy call by name does not guarantee
procedural equivalency, which plays a crucial role in
inferring from propositional attitudes (propositions about
agent belief, knowledge).

Example

[λx λy [0 + x y] [0 ÷ 02 00]] →v

improper construction – it does not construct anything,
because there is no value as a result of division 2 by 0
but by its β-reduction we gain proper construction
constructing a degenerate function f that is not defined on
any argument

λy [0 + [0 ÷ 02 00] y] →v f

10/18

Transparent intensional logic Problem Solution Questions

Substitution method

Principle
Function Sub operates on constructions Sub/(∗n ∗n ∗n∗n) in
the following way: It substitutes construction C2 for
construction x in construction C1(x)

[λxC1(x) C2] = 2[0Sub 0C2
0x 0C1(x)]

Application of Sub function corresponds to meta-programming
technics
Usage: logical analysis of anaphorical expressions in natural
language, unbinding of a trivialization-bounded variable and
so on

11/18

Transparent intensional logic Problem Solution Questions

Construction typing problem

Example of construction with type error

[λx[0 + x 01] 0John] →v

∆ = {John/ι, +/(τττ), 1/τ}

Type error is detected during type checking

Application of substitution method
2[0Sub 00John 0x 0[0 + x 01]] →v

∆ = {Sub/(∗n ∗n ∗n∗n), John/ι, +/(τττ), 1/τ}

Type error is not detected during type checking

12/18

Transparent intensional logic Problem Solution Questions

Construction typing problem

Type checking failure

Sub/(∗n ∗n ∗n∗n) ∈ ∆

Γ ⊢ Sub/(∗n ∗n ∗n∗n)

Γ ⊢ 0Sub → (∗n ∗n ∗n∗n)

John/ι ∈ ∆

Γ ⊢ John/ι

Γ ⊢ 0John → ι

Γ ⊢ 0John/∗n

Γ ⊢ 00John → ∗n

x → τ ∈ Γ
Γ ⊢ x → τ

Γ ⊢ x/∗n

Γ ⊢ 0x → ∗n T

Γ ⊢ [0Sub 00John 0x 0[0 + x 01]] → ∗n
(T-2exec)

Γ ⊢ 2[0Sub 00John 0x 0[0 + x 01]] → τ

Figure: Type Checking Tree

+/(τττ) ∈ ∆

Γ ⊢ +/(τττ)

Γ ⊢ 0+ → (τττ)
x → τ ∈ Γ
Γ ⊢ x → τ

1/τ ∈ ∆

Γ ⊢ 1/τ

Γ ⊢ 01 → τ

Γ ⊢ [0 + x 01] → τ
(T-prog)

Γ ⊢ [0 + x 01]/∗n

Γ ⊢ 0[0 + x 01] → ∗n

Figure: Type Checking Subtree T

13/18

Transparent intensional logic Problem Solution Questions

Construction typing problem

The problem
Loss of the type information about the object constructed by
the construction, which was trivialized, caused by the
combination of typing rules (T-prog) and (T-triv)

Γ | ∆ ⊢ C → α
(T-prog)

Γ | ∆ ⊢ C/∗n (T-triv)
Γ | ∆ ⊢ 0C → ∗n

The need to restore this type information in case of using the
double execution construction

Γ | ∆ ⊢ C → ∗n (T-2exec)
Γ | ∆ ⊢ 2C → α

Problem: types of constructions ∗n do not involve types of
values constructed by them

14/18

Transparent intensional logic Problem Solution Questions

Solution

Redefinition of the type of the construction ∗n

Inspired by the typing mechanism of references
Type of the construction will no longer only carry information
about its order, but also type information about the object
constructed by this construction
C/(∗nα) means that C is a construction of order n
constructing object of type α

Redefinition of Sub function type
Sub/((∗nα)(∗nβ)(∗nβ)(∗nα))

Redefinition of typing rules
Γ | ∆ ⊢ C → α

(T-prog)
Γ | ∆ ⊢ C/(α∗n)

Γ | ∆ ⊢ X → (α∗n)
(T-2exec)

Γ | ∆ ⊢ 2X → α

15/18

Transparent intensional logic Problem Solution Questions

Solution

Problematic construction
2[0Sub 00John 0x 0[0 + x 01]] →v

∆ = {Sub/((∗nτ)(∗nτ)(∗nτ)(∗nτ)), John/ι, +/(τττ), 1/τ}

Type error is detected during type checking

16/18

Transparent intensional logic Problem Solution Questions

Solution

Type checking

Sub/((∗nτ)(∗nτ)(∗nτ)(∗nτ)) ∈ ∆

Γ ⊢ Sub/((∗nτ)(∗nτ)(∗nτ)(∗nτ))

Γ ⊢ 0Sub → ((∗nτ)(∗nτ)(∗nτ)(∗nτ))

Error
Γ ⊢ 0John/(∗nτ)

Γ ⊢ 00John → (∗nτ)

x → τ ∈ Γ
Γ ⊢ x → τ

Γ ⊢ x/(∗nτ)

Γ ⊢ 0x → (∗nτ) T

Γ ⊢ [0Sub 00John 0x 0[0 + x 01]] → (∗nτ)
(T-2exec)

Γ ⊢ 2[0Sub 00John 0x 0[0 + x 01]] → τ

Figure: Type Checking Process

+/(τττ) ∈ ∆

Γ ⊢ +/(τττ)

Γ ⊢ 0+ → (τττ)
x → τ ∈ Γ
Γ ⊢ x → τ

1/τ ∈ ∆

Γ ⊢ 1/τ

Γ ⊢ 01 → τ

Γ ⊢ [0 + x 01] → τ
(T-prog)

Γ ⊢ [0 + x 01]/(∗nτ)

Γ ⊢ 0[0 + x 01] → (∗nτ)

Figure: Sub Type Checking Process T

17/18

Transparent intensional logic Problem Solution Questions

Results

TIL as a functional programming language
Publications:

Towards Resolving Type Inconsistencies in Transparent
Intensional Logic;1
Implementation of TIL-framework in Haskell.1 – inspired by
the redefinition of construction type
Another Evidence of Transparent Intensional Logic’s Expressive
Power in the Field of Temporal Logical Systems2

135th International Conference on Information Modelling and Knowledge Bases
EJC 2025, accepted

2IEEE 17th International Scientific Conference on Informatics (Informatics) 2024,
published

18/18

Transparent intensional logic Problem Solution Questions

Questions

	Main Part
	Transparent intensional logic
	Problem
	Solution
	Questions

