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Introduction



The problem: composing monads

Both computer scientists and mathematicians are interested in
composing monads.

1. In universal algebra, algebraic topology/geometry, logic:
composing 2 fixed monads

2. For programming language semantics: composing a monad with
a family of (other) monads
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The mathematicians’ solution: distributive laws

Given 2 monads T = (T, ηT, µT), S = (S, ηS, µS) over the category C

Definition (J. Beck, Distributive Laws, 1966)
A distributive law γ : S⇝ T is a natural transformation
γ : T ◦ S→ S ◦ T satisfying appropriate axioms.

This notion is extremely well behaved, allowing one to relate the
Eilenberg-Moore categories of the two monads with that of the
“composite”.

An analogous notion can be obtained by swapping T and S .
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The computer scientists’ solution: monad transformers

Given a monad T = (T, η, µ) over a category C

Definition (S. Liang, P. Hudak, M. Jones, Monad transformers and
modular interpreters, 1995)
A monad transformer TT = (TT, ϕ) for it is a pointed endofunctor on
the category Mnd(C), such that TT(Id) = T

I have issues with this notion, the most readily seen being that it
doesn’t relate the multiplication of T with that of the resulting
monad.
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Outline

I want to suggest an alternate, more structured (but also more
restrictive) approach to encompass the two notions. This will require
some work:

1. Generalize our context from monads over a category to monads
in a 2-category,

2. Recall (and slightly generalize) some well-known results from
the theory of 2-categories,

3. Perform a couple of relatively simple calculations.

The first step alone will give us some flavor of the construction
already, but it will become more usable later on. The rest of this
presentation will consist of exploring what the construction looks
like, and providing two examples.
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2-Categories



Basics

A 2-category is made of objects, morphisms and 2-cells. Given 2
objects we get a hom-category, and composition of 1-cells is only
unital and associative up to iso. They come in strict and non-strict
versions.

Given 2-categories we can talk about 2-functors; they come in strict,
pseudo, lax and colax versions.

There’s also notions of (strict, pseudo, lax, colax) 2-natural
transformations and only one notion of modifications, which will
only play a small (but not unimportant) role in the following.
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Functor 2-categories

As one can imagine functors, natural transformations and
modification can be packaged in 2-functor 2-categories. There’s a zoo
of such, but we’ll only be interested in:

1. St[C,D] contains strict functors, strict transformations and
modifications,

2. StLax[C,D] contains strict functors, lax transformations and
modifications,

3. Lax[C,D] contains lax functors, lax transformations and
modifications.

We’ll also breifly talk about Ps[C,D], but it won’t play an important
role.
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Monads in 2-categories

Just as we do for the 2-category Cat of categories, we can talk about
monads in a general 2-category C

Definition (J. Bénabou, Introduction to bicategories, 1967)
A monad (a, t, η, µ) is given by an object a : C, and endomorphism
T : a→ a and 2-cells η : ida → t, µ : t · t→ t, subject to the usual
axioms (after inserting the appropriate coherences)

As expected, in the case C = Cat, we obtain the usual notion of
monads.
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Monads and functors

In this general framework, something nice happens: lax (and hence
pseudo and strict) 2-functors preserve monads. More is true:

Theorem
Monads in a 2-category C are 1-1 with lax functors ∗ → C

Which leads us to define Mnd(C) := Lax[∗, C]. The usual monad
morphisms are morphisms in this 2-category, but there’s more
general morphisms (since we don’t fix the underlying 2-cells).
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Distributive laws are monads, too!

Our new, more general framework can start to pay us off:

Theorem
Distributive laws between monads in the 2-category C are just
monads in the 2-category Mnd(C).

We can hence define Dist(C) := Mnd(Mnd(C)).

It would be extremely neat if we could “curry” here:

Dist(C) = Lax[∗, Lax[∗, C]] ≃ Lax[∗⊠ ∗, C]

Sadly, there’s no ⊠ that allows for this (as far as I’m aware)!
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Important tool (1): lax functor
classifiers



The properties we want

We could make our previous calculation work if only we had a way to
replace ∗ with some other 2-category ∗̂, such that

Lax[∗, C] ≃ StLax[∗̂, C]

We could give a more formal description of what we want, using the
language of 3-categories. But who’s got time for that?

The point is, this can be done. And the construction is not even that
bad!
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A decategorified example

There’s a 2-monad over Cat whose pseudo algebras are monoidal
categories. The induced forgetful functor Algst → Alglax has a left
(2-)adjoint. How does this work?

The objects of the new monoidal category are sequences of such,
and morphisms are either sequences, or of the form
[A1, . . . , An] → A1 ⊗ . . . An. We do this “operadically”.

We then quotient the new morphisms in (the only) reasonable way.

This construction is called the “Lax morphism classifier” by R.
Blackwell, G. M. Kelly, A. J. Power in Two-dimensional monad theory
(1989).
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The actual construction (sketch)

We can do something similar for 2-categories!

Theorem
Lax Functor Classifier Given a 2-category C there’s a 2-category Ĉ
such that for every 2-category D,

Lax[C,D] ≃ StLax[Ĉ,D]

The construction is almost identical as for monoidal categories, but
objects are now the same and we play the game from the previous
slide for morphisms and 2-cells (with the added constraint that they
have to be composable).

We can also prove that this commutes with delooping monoidal
categories! This implies, together with a small calculation, that

∗̂ ≃ B̂∗ ≃ B∗̂ ≃ B∆a
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Important tool (2): the Gray
tensor product



The universal property

The missing ingredient would be a left (2-) adjoint to the StLax
2-functor.

We don’t know of any 2-adjoint, but there is an ordinary left adjoint
in the literature: (the lax variant of) the Gray tensor product ⊗ℓ. It
enjoys the following universal property

2Cat[B, StLax[C,D]] ≃ 2Cat[B ⊗ℓ C,D]

Where 2Cat is the category of 2-categories. This was first introduced
by J. W. Gray in Formal category theory: adjointness for 2-categories
(1974).
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The actual construction (sketch)

Constructing C ⊗ℓ D goes something like this:

1. The objects a : C ⊗ℓ D are pairs a = (c,d), with c : C and d : D,
2. Morphisms generated (under composition) by pairs f = (g,h),
where one of the two is an identity (appropriately quotiented)

3. 2-cells are generated (under horiontal and vertical composition)
by pairs of 2-cells (where one is the identity over the identity),
plus “swaps”:

γg,h : (g, id) ◦ (id,h) → (id,h) ◦ (g, id)

quotiented by the appropriate relations (relating horizontal and
vertical composites), plus relations encoding “naturality” for γ’s.
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The payoff: parametric n-fold
monads



A simple calculation

We are now ready to harvest the full payoff of all this abstract
nonsense. The first step is to compute define, for C,D 2-categories

Definition
Parametric (iterated) monads The set of D-parametric monads in C is

PMnd(D, C) :=2Cat[D,Mnd(C)]
=2Cat[D, Lax[∗, C]]
≃2Cat[D, StLax[B∆a, C]]
≃2Cat[D ⊗ℓ B∆a, C]

A similar definition works for D-parametric n-fold monads
PMndn(D, C). We call the special case n = 2 parametric distributive
laws, PDist(D, C).
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Walking (semi-strict) gadgets!

It’s worth taking a step back, and look at the simplest case for the
2-category of parameters: D = ∗. Clearly, ∗ ⊗ℓ B∆a = B∆a: this
justifies calling it the walking monad.

A similar argument suggests we call (B∆a)
⊗ℓ2 the walking

distributive law and (B∆a)
⊗ℓn the walking n-fold monad1.

1One might think we have to choose a way of associating ⊗ℓ , but carrying out the
previous calculation shows that we have to associate to the left.
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What’s inside? (Or, Yang-Baxter for free!)

It is now worth looking at these “walking gadgets” more closely, to
understand where each piece of data comes from.

For walking distributive laws, the “actual distributive law” is given by
the swaps that the Gray tensor product introduces.

For walking 3-fold monads (or more generally, for n ≥ 3), it is just as
clear that the 3 distributive laws we expect come from the same
source. But we can also notice that they are related by Yang-Baxter
equations (as noticed by E. Cheng in Iterated distributive laws, 2007):
these fall out of the naturality equations we imposed while
performing the Gray tensor product!
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Two examples



Let’s be concrete for a second

We managed to produce a very abstract tool for talking about
monads and their “compositions”. We now turn to well-understood
cases, to see how our new shiny tool applies.

We’ll focus on the Writer and Exception monads, since there’s
relatively straightforward constructions to make them fit here.
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The writer monad

The fact that the Writer monad “composes with everything” can be
encoded in a parametric distributive law.

1. Consider a cartesian closed category C. We’ll be working with
the 2-category BFunC[C, C], whose morphisms are C-enriched
endofunctors.

2. We then construct a Mnd(BFunC[C, C])-parametric distributive
law on it, exploiting the fact that being C-enriched for a monads
means exactly that it lifts to the Eilenberg-Moore categories for
writer monads (a.k.a. categories of M-object / M-modules, for
every monoid object M : C)
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The either monad

The game we play for the Exception monad is similar (i.e. we
construct a similar ambient 2-category; the only difference is we
don’t need self-enrichment). Fix a category C with finitary coproducts.

Here, the key fact is that the Eilenberg-Moore category for the
Exception monad is equivalent to the coslice over the parameter.
It’s then a straightforward computation to show that every monad
lifts to it (a key point is that every monad is pointed).

But morphisms of monads aren’t pointed; we need to restrict to the
ones that are. In the end, what we get is a
Mnd∗(BFun[C, C])-parametric distributive law.
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One last treat: monad morphisms
and distributive laws



A surprisingly weird question

Suppose given a category C and:

1. Monads

T1 = (T1, ηT1 , µT1) , T2 = (T2, ηT2 , µT2) , S1 = (S1, ηS1 , µS1 ) , S2 = (S2, ηS2 , µS2)

2. Monad morphisms

F1 = (F1, ϕ1) : T1 → T2 , F2 = (F2, ϕ2) : S1 → S2

3. Distributive laws

γ1 : T1 ⇝ S1 , γ2 : T2 ⇝ S2

When do F1, F2 induce a monad morphism between the composite
monads?
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Whose answer is now straightforward

The answer turns out to be: when F1 = F2!

In this case, we can actually assemble the data from the previous
slide in a morphism in the 2-category Mnd(Mnd(BFun[C, C)) as
follows:

((F, ϕ1), ϕ2) : ((T1, ηT1 , µT1), (S1, γ1), ηS1 , µS1 ) → ((T2, ηT2 , µT2), (S2, γ2), ηS2 , µS2)

which, as we have seen, is exactly what we need. A few similar
results are similarly straightforward from this perspective.
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Future directions

1. Implementing some monad library that uses our notion of
parametric distributive laws instead of monad transformers,

2. Formally verifying (fragments of) this result,
3. Extending this work to structured monads.

Thanks for bearing with me this long!
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