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Motivation

Simple Type Theory/Higher-Order Logic (HOL)

• theoretic: Type Theory is used as mathematical foundation, created in
response to the foundational crisis

• practical: also used as a model of computation (Functional Programming)
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Motivation

Simple Type Theory/Higher-Order Logic (HOL)

• theoretic: Type Theory is used as mathematical foundation, created in
response to the foundational crisis

• practical: also used as a model of computation (Functional Programming)

Dependent Type Theory/Dependently-Typed Higher-Order Logic (DHOL)

• theoretic: allows to express mathematical concepts like finite, fixed-size
sets

• practical: allows to incorporate guards into the level of types (eg. unfailing
head function)
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Syntax

HOL Syntax

• This is only one presentation of HOL

• Simple Type Theory a la Church with a base-type for booleans, implication
and equality

T ::= ◦ | T, a tp | T, c : A | T, F theory

Γ ::= • | Γ, x : A | Γ, F context

A,B ::= a | o | A → B types

t,u, v ::= x | λx : A.t | tu | t ⇒ u | t =A u | ⊥ terms

• Con- and Disjunction, Quantification, etc. can be encoded

• ∀f : nat → nat → nat.((λn : nat.f 0 n) =nat→nat f 0)
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Judgements

What can we do with it?

• ∀f : nat → nat → nat.((λn : nat.f 0 n) =nat→nat f 0) ?

• How to reason about statements?

• Judgements:

Γ ⊢ t Well-formed boolean term t is provable

Γ ⊢ t : A Term t is of (well-formed) type A

Γ ⊢ A ≡ B Well-formed types A and B are equal

Γ ⊢ A tp Type A is well-formed
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Judgements

What can we do with it?

• ∀f : nat → nat → nat.((λn : nat.f 0 n) =nat→nat f 0) ?

• Syntax has no meaning

• We give meaning by Judgements:

Γ ⊢ t Well-formed boolean term t is provable

Γ ⊢ t : A Term t is of (well-formed) type A

Γ ⊢ A ≡ B Well-formed types A and B are equal

Γ ⊢ A tp Type A is well-formed

The missing piece

But how do we arrive at a judgement?
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Rules

Some Natural Deduction Rules

Γ ⊢ s : o Γ ⊢ t : o

Γ ⊢ (s ⇒ t) : o
⇒Type

Γ ⊢ s : o Γ, s ⊢ t

Γ ⊢ s ⇒ t
⇒

Γ ⊢ A ≡ A′ Γ ⊢ B ≡ B′

Γ ⊢ A → B ≡ A′ → B′ →Cong
Γ ⊢ A tp

Γ ⊢ A ≡ A
tpRefl

a tp ∈ T

Γ ⊢ a tp
tp
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Example

Natural Numbers - Theory

types constants/functions axioms

nat tp 0 : nat ∀n,m : nat.(plus (suc m) n =nat plus m (suc n))

suc : nat → nat ∀n : nat.(plus 0 n =nat n)

plus : nat → nat → nat

Natural Numbers - Judgements

• Γ ⊢ ∀i, j, k : nat.(plus i (plus j k) =nat plus (plus i j)k)

• Γ ⊢ suc (plus 0 (suc 0)) : nat
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Semantics

Standard Models - informal

A Standard Model is a tuple (D, J•K) where the class {Dα} consists of

• Dι — a set of arbitrary elements for each base type

• Do = {T, F}
• Dβγ = {f | f : Dβ 7→ Dγ} for all β, γ

and the interpretation function J•K maps

• contexts to sets of variable assignments, s.t. any axioms evaluate to ⊤,

• terms of a type to elements of the corresponding set,

• boolean connectives to their standard interpretation,

• lambda abstractions to functions, and

• applications to function calls on their arguments.
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Semantics

Model for our formulation of Natural Numbers

Continuing our previous example of the natural numbers a possible model would
be

• Dnat = {0N,1N,2N, ...}
• J0K = 0N

• JsucK = 1N+

• JplusK = +

It is easy to see that + satisfies the definitional axioms of plus, making this a
valid model of our theory.
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Semantics

However...

This would now allow us to model arithmetic — due to Gödel it has to be
incomplete!

Henkin Models/General Models

To get sound and complete models, we follow Henkin. In order to regain
completeness, we restrict the domain of functions:

• Dι — a set of arbitrary elements for each base type

• Do = {T, F}
• Dβγ={f | f : Dβ 7→ Dγ} for all β, γ
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Semantics

However...

This would now allow us to model arithmetic — due to Gödel it has to be
incomplete!

Henkin Models/General Models

To get sound and complete models, we follow Henkin. In order to regain
completeness, we restrict the domain of functions:

• Dι — a set of arbitrary elements for each type α

• Do = {T, F}
• Dβγ⊆{f | f : Dβ 7→ Dγ} for all β, γ
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Extensions

DHOL Syntax

Now we can extend HOL to dependent types by replacing every occurrence of
type-formation...

T ::= ◦ | T,a tp | T, x : A | T, F theory

Γ ::= • | Γ, x : A | Γ, F context

A,B ::= a | o | A → B types

t,u, v ::= x | λx : A.t | tu | t ⇒ u | t =A u | ⊥ terms
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Extensions

DHOL Syntax

Now we can extend HOL to dependent types by replacing every occurrence of
type-formation...

T ::= ◦ | T,a : (Πx : A.)∗ tp | T, x : A | T, F theory

Γ ::= • | Γ, x : A | Γ, F context

A,B ::= at1...tn | o | Πx : A.B types

t,u, v ::= x | λx : A.t | tu | t ⇒ u | t =A u | ⊥ terms

... with the more general, dependent variant

EuroProofNet Working Group 6 Meeting 17.04.2025 14



Rules

HOL-ND to DHOL-ND

Γ ⊢ s : o Γ ⊢ t : o

Γ ⊢ (s ⇒ t) : o
⇒Type

Γ ⊢ s : o Γ, s ⊢ t

Γ ⊢ s ⇒ t
⇒

Γ ⊢ A ≡ A′ Γ ⊢ B ≡ B′

Γ ⊢ A→B ≡ A′→B′ →Cong
Γ ⊢ A tp

Γ ⊢ A ≡ A
tpRefl
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Rules
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Γ ⊢ s : o Γ, s ⊢ t : o

Γ ⊢ (s ⇒ t) : o
⇒Type

Γ ⊢ s : o Γ, s ⊢ t

Γ ⊢ s ⇒ t
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Γ ⊢ A ≡ A′ Γ, x : A ⊢ B ≡ B′
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Rules

HOL-ND to DHOL-ND

Γ ⊢ s : o Γ, s ⊢ t : o

Γ ⊢ (s ⇒ t) : o
⇒Type

Γ ⊢ s : o Γ, s ⊢ t

Γ ⊢ s ⇒ t
⇒

Γ ⊢ A ≡ A′ Γ, x : A ⊢ B ≡ B′

Γ ⊢ Πx : A.B ≡ Πx′ : A′.B′ ΠCong

a : (Πx1 : A1, ..., Πxn : An) ∈ Γ Γ ⊢ s1 =A1 t1 ... Γ ⊢ sn =An[x1/s1,...,xn−1/sn−1] tn

Γ ⊢ as1...sn ≡ at1...tn
tpRefl
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Example

Fixed Length Lists of Natural Numbers - Theory

types constants/functions

lst : Πn : nat tp nil : lst 0

cons : Πn : nat.nat → lst n → lst (suc n)

app : Πn,m : nat.lst n → lst m → lst (plus n m)

Fixed Length Lists of Natural Numbers - Judgements

• Γ ⊢ ∀n : nat.∀x : lst n.(app 0 n nil x =lst n x)
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Erasure

Simplifying things by making them more complicated

• DHOL is currently barely supported

• To increase usability, an erasure from DHOL to HOL exists

• Basic idea: Capture information lost during erasure in a Partial Equivalence
Relation (PER)

Erasure, abridged

a : Πx1 : A1, ...,Πxn : An tp =

• a tp

• a∗ : A1 → ... → An → a → a → o

• Set of Axioms establishing PER
properties for a∗

x : A =

• x : A

• A∗ xx
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Erasure Example

Erasure, abridged

a : Πx1 : A1, ...,Πxn : An tp =

• a tp

• a∗ : A1 → ... → An → a → a → o

• Set of Axioms establishing PER
properties for a∗

x : A =

• x : A

• A∗ xx

Erasing the Fixed Length List of Natural Numbers

lst : Πn : nat tp =

• lst tp

• lst∗ : nat → lst → lst → o

• + axioms

nil : lst 0 =

• nil : lst

• lst∗ 0 nil nil
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Erasure Example

Erasure, abridged

a : Πx1 : A1, ...,Πxn : An tp =

• a tp

• a∗ : A1 → ... → An → a → a → o

• Set of Axioms establishing PER
properties for a∗

x : A =

• x : A

• A∗ xx

∀ x : A.t =
∀x : A.
A∗ x x ⇒ t

Erasing the Fixed Length List of Natural Numbers

lst : Πn : nat tp =

• lst tp

• lst∗ : nat → lst → lst → o

• + axioms

nil : lst 0 =

• nil : lst

• lst∗ 0 nil nil

∀x : lst 0.t =
∀x : lst.
lst∗ 0 x x ⇒ t
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Motivation

Current Situation

• DHOL’s semantics currently only defined in terms of inference rules

• It would be desireable to have a model theory

• Depending on the goals, different models lend themselves to consideration

Our Goals

• DHOL is implemented in the automated theorem prover Lash

• Unclear whether it is sound to use erased and non-erased terms
“interchangeably”

• We suspect it is!
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Notation

Family of sets

There are a lot of different ways to express indexed families of sets.
We will write a family of sets Ai with indices in the set I as ⟨Ai⟩i:I. Accessing the
subsets of A will then be written as (A)i.
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Semantics of DHOL

DHOL General Models

Models are defined as previously.
The interesting case for the interpretation function is that of dependent types in
the theory and their realisation:

JT, a : Πx1 : A1 ... Πxn : An tpK = JTK ∪ (⟨...(⟨xan⟩an:An)...⟩a1)a1:A1

Ja t1 ... tnK = (...((JaK)JtnK)...)Jt1K

i.e. the set resulting of instantiating the index family ⟨a⟩ with t1, ..., tn
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Open Challenges

What remains to be done?

• Soundness proofs seem to be straight-forward.

• Translation-preservation (i.e. “For every model M, iff JΓ K |=DHOL
JTK JFK and

Γ ⊢DHOLT F then JΓK |=HOL
JTK JFK”) is some work but I am optimistic.

• However, conversations with colleagues suggest completeness proof might
be a problem.
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Conclusion

• Henkin semantics/General models are an established interpretation of HOL

• We want a HOL-compatible interpretation of DHOL so we can mix reasoning
steps

• General DHOL models are our suggestion to achieve that

• Several open questions remain
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