

Translation-respecting Semantics for Dependently-Typed Higher-Order Logic

Daniel Ranalter

Overview

- Motivation
- Higher-Order Logic
- Henkin Semantics
- Dependently-Typed Higher-Order Logic
- DHOL Semantics
- Conclusion

Motivation

Simple Type Theory/Higher-Order Logic (HOL)

- theoretic: Type Theory is used as mathematical foundation, created in response to the foundational crisis
- practical: also used as a model of computation (Functional Programming)

Motivation

Simple Type Theory/Higher-Order Logic (HOL)

- theoretic: Type Theory is used as mathematical foundation, created in response to the foundational crisis
- practical: also used as a model of computation (Functional Programming)

Dependent Type Theory/Dependently-Typed Higher-Order Logic (DHOL)

- theoretic: allows to express mathematical concepts like finite, fixed-size sets
- practical: allows to incorporate guards into the level of types (eg. unfailing head function)

Syntax

HOL Syntax

- This is only one presentation of HOL
- Simple Type Theory a la Church with a base-type for booleans, implication and equality

T::=
$$\circ \mid T, a tp \mid T, c : A \mid T, F$$
theoryГ::= $\bullet \mid \Gamma, x : A \mid \Gamma, F$ contextA, B::= $a \mid o \mid A \rightarrow B$ typest, u, v::= $x \mid \lambda x : A . t \mid tu \mid t \Rightarrow u \mid t =_A u \mid \bot$ terms

- Con- and Disjunction, Quantification, etc. can be encoded
- $\forall f : nat \rightarrow nat \rightarrow nat.((\lambda n : nat.f \ 0 \ n) =_{nat \rightarrow nat} f \ 0)$

Judgements

What can we do with it?

- $\forall f : nat \rightarrow nat \rightarrow nat.((\lambda n : nat.f \ 0 \ n) =_{nat \rightarrow nat} f \ 0) ?$
- How to reason about statements?
- Judgements:

$\Gamma \vdash t$	Well-formed boolean term t is provable		
$\Gamma \vdash t : A$	Term t is of (well-formed) type A		
$\Gamma \vdash A \equiv B$	Well-formed types A and B are equal		
$\Gamma \vdash A \ tp$	Type A is well-formed		

Judgements

What can we do with it?

- $\forall f : nat \rightarrow nat \rightarrow nat.((\lambda n : nat.f \ 0 \ n) =_{nat \rightarrow nat} f \ 0) ?$
- Syntax has no meaning
- We give meaning by Judgements:

$\Gamma \vdash t$	Well-formed boolean term t is provable	
$\Gamma \vdash t : A$	Term t is of (well-formed) type A	
$\Gamma \vdash A \equiv B$	Well-formed types A and B are equal	
$\Gamma \vdash A \ tp$	Type A is well-formed	

The missing piece

universität

innsbruck

But how do we arrive at a judgement?

Some Natural Deduction Rules

$$\frac{\Gamma \vdash s: o \quad \Gamma \vdash t: o}{\Gamma \vdash (s \Rightarrow t): o} \Rightarrow \mathsf{Type} \qquad \frac{\Gamma \vdash s: o \quad \Gamma, s \vdash t}{\Gamma \vdash s \Rightarrow t} \Rightarrow$$

$$\frac{\Gamma \vdash A \equiv A' \quad \Gamma \vdash B \equiv B'}{\Gamma \vdash A \to B \equiv A' \to B'} \to \text{Cong} \qquad \frac{\Gamma \vdash A \ tp}{\Gamma \vdash A \equiv A} \text{tpRefl}$$
$$\frac{a \ tp \ \in \ T}{\Gamma \vdash a \ tp} \text{tp}$$

Example

universität innsbruck

Natural Numbers - Theory			
types	constants/functions	axioms	
nat tp	0 : <i>nat</i>	$\forall n, m : nat.(plus (suc m) n =_{nat} plus m (suc n))$	
	suc : nat $ ightarrow$ nat	$\forall n : nat.(plus 0 \ n =_{nat} n)$	
	plus : nat $ ightarrow$ nat $ ightarrow$ nat		

Natural Numbers - Judgements

- $\Gamma \vdash \forall i, j, k : nat.(plus i (plus j k) =_{nat} plus (plus i j)k)$
- $\Gamma \vdash suc (plus 0 (suc 0)) : nat$

Semantics

Standard Models - informal

A Standard Model is a tuple $(D, \llbracket \bullet \rrbracket)$ where the class $\{D_{\alpha}\}$ consists of

- D_{ι} a set of arbitrary elements for each base type
- $D_o = \{T, F\}$

•
$$D_{\beta\gamma} = \{f \mid f : D_{\beta} \mapsto D_{\gamma}\}$$
 for all β, γ

Semantics

Standard Models - informal

A Standard Model is a tuple $(D, \llbracket \bullet \rrbracket)$ where the class $\{D_{\alpha}\}$ consists of

- D_{ι} a set of arbitrary elements for each base type
- $D_o = \{T, F\}$
- $D_{\beta\gamma} = \{f \mid f : D_{\beta} \mapsto D_{\gamma}\}$ for all β, γ

and the interpretation function $[\![\bullet]\!]$ maps

- contexts to sets of variable assignments, s.t. any axioms evaluate to \top ,
- terms of a type to elements of the corresponding set,
- boolean connectives to their standard interpretation,
- lambda abstractions to functions, and
- applications to function calls on their arguments.

Semantics

Model for our formulation of Natural Numbers

Continuing our previous example of the natural numbers a possible model would be

- $D_{nat} = \{\mathbf{0}_{\mathbb{N}}, \mathbf{1}_{\mathbb{N}}, \mathbf{2}_{\mathbb{N}}, ...\}$
- $\bullet \ \llbracket 0 \rrbracket = 0_{\mathbb{N}}$
- $\llbracket suc \rrbracket = \mathbf{1}_{\mathbb{N}} +$
- $\bullet ~ \llbracket \textit{plus} \rrbracket = +$

It is easy to see that + satisfies the definitional axioms of *plus*, making this a valid model of our theory.

However...

This would now allow us to model arithmetic — due to Gödel it has to be incomplete!

However...

This would now allow us to model arithmetic — due to Gödel it has to be incomplete!

Henkin Models/General Models

To get sound *and* complete models, we follow Henkin. In order to regain completeness, we restrict the domain of functions:

• D_{ι} — a set of arbitrary elements for each base type

•
$$D_o = \{T, F\}$$

•
$$D_{\beta\gamma} = \{ f \mid f : D_{\beta} \mapsto D_{\gamma} \}$$
 for all β, γ

However...

This would now allow us to model arithmetic — due to Gödel it has to be incomplete!

Henkin Models/General Models

To get sound *and* complete models, we follow Henkin. In order to regain completeness, we restrict the domain of functions:

• D_{ι} — a set of arbitrary elements for each type α

•
$$D_o = \{T, F\}$$

•
$$D_{\beta\gamma} \subseteq \{f \mid f : D_{\beta} \mapsto D_{\gamma}\}$$
 for all β, γ

Extensions

DHOL Syntax

Now we can extend HOL to dependent types by replacing every occurrence of type-formation...

Т	::=	○ T,a tp T,x : A T,F	theory
Г	::=	• $\Gamma, x : A \mid \Gamma, F$	context
$\boldsymbol{A}, \boldsymbol{B}$::=	$a \mid o \mid A \rightarrow B$	types
t, u, v	::=	$x \mid \lambda x : A.t \mid tu \mid t \Rightarrow u \mid t =_A u \mid \bot$	terms

Extensions

DHOL Syntax

Now we can extend HOL to dependent types by replacing every occurrence of type-formation...

Т	::=	$\circ T,a: (\Pi x : A)^* tp T,x : A T,F$	theory
Г	::=	• Γ, x : A Γ, F	context
$\boldsymbol{A}, \boldsymbol{B}$::=	$at_1t_n \mid o \mid \Pi x : A.B$	types
t, u, v	::=	$x \mid \lambda x : A.t \mid tu \mid t \Rightarrow u \mid t =_A u \mid \bot$	terms

... with the more general, dependent variant

$$\frac{\Gamma \vdash s: o \quad \Gamma \vdash t: o}{\Gamma \vdash (s \Rightarrow t): o} \Rightarrow \mathsf{Type} \qquad \frac{\Gamma \vdash s: o \quad \Gamma, s \vdash t}{\Gamma \vdash s \Rightarrow t} \Rightarrow$$
$$\frac{\Gamma \vdash A \equiv A' \quad \Gamma \vdash B \equiv B'}{\Gamma \vdash A \to B \equiv A' \to B'} \to \mathsf{Cong} \qquad \frac{\Gamma \vdash A \ tp}{\Gamma \vdash A \equiv A} \mathsf{tpRef}$$

$$\frac{\Gamma \vdash s: o \quad \Gamma, s \vdash t: o}{\Gamma \vdash (s \Rightarrow t): o} \Rightarrow \mathsf{Type} \qquad \frac{\Gamma \vdash s: o \quad \Gamma, s \vdash t}{\Gamma \vdash s \Rightarrow t} \Rightarrow$$
$$\frac{\Gamma \vdash A \equiv A' \quad \Gamma \vdash B \equiv B'}{\Gamma \vdash A \Rightarrow B \equiv A' \Rightarrow B'} \Rightarrow \mathsf{Cong} \qquad \frac{\Gamma \vdash A tp}{\Gamma \vdash A \equiv A} \mathsf{tpRefl}$$

$$\frac{\Gamma \vdash s: o \quad \Gamma, s \vdash t: o}{\Gamma \vdash (s \Rightarrow t): o} \Rightarrow \mathsf{Type} \qquad \frac{\Gamma \vdash s: o \quad \Gamma, s \vdash t}{\Gamma \vdash s \Rightarrow t} \Rightarrow$$

$$\frac{\Gamma \vdash A \equiv A' \quad \Gamma, x : A \vdash B \equiv B'}{\Gamma \vdash \Pi x : A B \equiv \Pi x' : A' B'} \Pi \text{Cong} \qquad \frac{\Gamma \vdash A \text{ tp}}{\Gamma \vdash A \equiv A} \text{tpRefl}$$

а

$$\frac{\Gamma \vdash s: o \quad \Gamma, s \vdash t: o}{\Gamma \vdash (s \Rightarrow t): o} \Rightarrow \mathsf{Type} \qquad \frac{\Gamma \vdash s: o \quad \Gamma, s \vdash t}{\Gamma \vdash s \Rightarrow t} \Rightarrow$$

$$\frac{\Gamma \vdash A \equiv A' \quad \Gamma, x: A \vdash B \equiv B'}{\Gamma \vdash \Pi x: A.B \equiv \Pi x': A'.B'} \mathsf{\PiCong}$$

$$: (\Pi x_1 : A_1, ..., \Pi x_n : A_n) \in \Gamma \quad \Gamma \vdash s_1 =_{A_1} t_1 \quad ... \quad \Gamma \vdash s_n =_{A_n[x_1/s_1, ..., x_{n-1}/s_{n-1}]} t_n$$

$$\Gamma \vdash as_1 ... s_n \equiv at_1 ... t_n$$

$$\mathsf{tpRefl}$$

Example

Fixed Length Lists of Natural Numbers - Theory
--

types	constants/functions
lst : Пn : nat tp	nil : Ist 0
	cons : ${\sf \Pi}{\sf n}$: nat.nat $ o$ lst ${\sf n}$ $ o$ lst (suc ${\sf n}$)
	$app:\Pi n,m:$ nat.lst $n ightarrow$ lst $m ightarrow$ lst (plus n m)

Fixed Length Lists of Natural Numbers - Judgements

•
$$\Gamma \vdash \forall n : nat. \forall x : lst n. (app 0 n nil x =_{lst n} x)$$

Erasure

Simplifying things by making them more complicated

- DHOL is currently barely supported
- To increase usability, an erasure from DHOL to HOL exists
- Basic idea: Capture information lost during erasure in a Partial Equivalence Relation (PER)

• A* x x

Erasure, abridged

 $\overline{a:\Pi x_1:A_1,...,\Pi x_n:A_n tp} = \overline{x:A} = \mathbf{a} tp$ • a tp• $x:\overline{A}$

•
$$a^*:\overline{A_1} o ... o \overline{A_n} o a o a o o$$

• Set of Axioms establishing PER properties for *a**

Erasure Example

Erasure, abridged

$$a: \Pi x_1: A_1, \dots, \Pi x_n: A_n tp =$$

$$a^*:\overline{A_1}
ightarrow...
ightarrow\overline{A_n}
ightarrow a
ightarrow a
ightarrow a
ightarrow o$$

Erasing the Fixed Length List of Natural Numbers

 $Ist : \Pi n : nat tp =$

Ist tp

•
$$\textit{lst}^*:\textit{nat} \rightarrow \textit{lst} \rightarrow \textit{lst} \rightarrow \textit{o}$$

+ axioms

$$\overline{x:A} =$$
• $x:\overline{A}$

 \overline{nil} : lst 0 =

nil : lst
 lst* 0 nil nil

21

Erasure Example

Erasure, abridged

$$a: \Pi x_1: A_1, \dots, \Pi x_n: A_n tp =$$

$$a^*:\overline{A_1} \to ... \to \overline{A_n} \to a \to a \to o$$

$$\overline{x : A} = \qquad \forall x : A.t = \bullet x : \overline{A} \qquad \forall x : \overline{A}. \bullet A^* x x \qquad A^* x x \Rightarrow$$

• Set of Axioms establishing PER properties for *a**

Erasing the Fixed Length List of Natural Numbers

$\overline{Ist:\Pi n:nattp} =$	$\overline{nil: lst 0} =$	$\forall x : Ist \ 0.t =$
 Ist tp 	• nil : Ist	$\forall x : lst.$
• $\textit{lst}^*:\textit{nat} \rightarrow \textit{lst} \rightarrow \textit{lst} \rightarrow \textit{o}$	 Ist* 0 nil nil 	$lst^* 0 x x \Rightarrow t$

+ axioms

Motivation

Current Situation

- DHOL's semantics currently only defined in terms of inference rules
- It would be desireable to have a model theory
- Depending on the goals, different models lend themselves to consideration

Motivation

Current Situation

- DHOL's semantics currently only defined in terms of inference rules
- It would be desireable to have a model theory
- Depending on the goals, different models lend themselves to consideration

Our Goals

- DHOL is implemented in the automated theorem prover Lash
- Unclear whether it is sound to use erased and non-erased terms "interchangeably"
- We suspect it is!

Notation

Family of sets

There are a lot of different ways to express indexed families of sets. We will write a family of sets A_i with indices in the set I as $\langle A_i \rangle_{i:I}$. Accessing the subsets of A will then be written as $(A)_i$.

Semantics of DHOL

DHOL General Models

Models are defined as previously.

The interesting case for the interpretation function is that of dependent types in the theory and their realisation:

$$\llbracket T, a : \Pi x_1 : A_1 \dots \Pi x_n : A_n tp \rrbracket = \llbracket T \rrbracket \cup (\langle \dots (\langle x_{a_n} \rangle_{a_n:A_n}) \dots \rangle_{a_1})_{a_1:A_1}$$
$$\llbracket a t_1 \dots t_n \rrbracket = (\dots ((\llbracket a \rrbracket)_{\llbracket t_n \rrbracket}) \dots)_{\llbracket t_1 \rrbracket}$$

i.e. the set resulting of instantiating the index family $\langle a \rangle$ with $t_1, ..., t_n$

Open Challenges

What remains to be done?

- Soundness proofs seem to be straight-forward.
- Translation-preservation (i.e. "For every model M, iff $\llbracket \Gamma \rrbracket \models_{\llbracket T \rrbracket}^{DHOL} \llbracket F \rrbracket$ and $\Gamma \vdash_{T}^{DHOL} F$ then $\llbracket \overline{\Gamma} \rrbracket \models_{\llbracket \overline{T} \rrbracket}^{HOL} \llbracket \overline{F} \rrbracket$ ") is some work but I am optimistic.
- However, conversations with colleagues suggest completeness proof might be a problem.

Conclusion

- Henkin semantics/General models are an established interpretation of HOL
- We want a HOL-compatible interpretation of DHOL so we can mix reasoning steps
- General DHOL models are our suggestion to achieve that
- Several open questions remain