
Translation-respecting Semantics for
Dependently-Typed Higher-Order Logic

Daniel Ranalter

Overview

• Motivation

• Higher-Order Logic

• Henkin Semantics

• Dependently-Typed Higher-Order Logic

• DHOL Semantics

• Conclusion

EuroProofNet Working Group 6 Meeting 17.04.2025 1

Motivation

Simple Type Theory/Higher-Order Logic (HOL)

• theoretic: Type Theory is used as mathematical foundation, created in
response to the foundational crisis

• practical: also used as a model of computation (Functional Programming)

EuroProofNet Working Group 6 Meeting 17.04.2025 2

Motivation

Simple Type Theory/Higher-Order Logic (HOL)

• theoretic: Type Theory is used as mathematical foundation, created in
response to the foundational crisis

• practical: also used as a model of computation (Functional Programming)

Dependent Type Theory/Dependently-Typed Higher-Order Logic (DHOL)

• theoretic: allows to express mathematical concepts like finite, fixed-size
sets

• practical: allows to incorporate guards into the level of types (eg. unfailing
head function)

EuroProofNet Working Group 6 Meeting 17.04.2025 3

Syntax

HOL Syntax

• This is only one presentation of HOL

• Simple Type Theory a la Church with a base-type for booleans, implication
and equality

T ::= ◦ | T, a tp | T, c : A | T, F theory

Γ ::= • | Γ, x : A | Γ, F context

A,B ::= a | o | A → B types

t,u, v ::= x | λx : A.t | tu | t ⇒ u | t =A u | ⊥ terms

• Con- and Disjunction, Quantification, etc. can be encoded

• ∀f : nat → nat → nat.((λn : nat.f 0 n) =nat→nat f 0)

EuroProofNet Working Group 6 Meeting 17.04.2025 4

Judgements

What can we do with it?

• ∀f : nat → nat → nat.((λn : nat.f 0 n) =nat→nat f 0) ?

• How to reason about statements?

• Judgements:

Γ ⊢ t Well-formed boolean term t is provable

Γ ⊢ t : A Term t is of (well-formed) type A

Γ ⊢ A ≡ B Well-formed types A and B are equal

Γ ⊢ A tp Type A is well-formed

EuroProofNet Working Group 6 Meeting 17.04.2025 5

Judgements

What can we do with it?

• ∀f : nat → nat → nat.((λn : nat.f 0 n) =nat→nat f 0) ?

• Syntax has no meaning

• We give meaning by Judgements:

Γ ⊢ t Well-formed boolean term t is provable

Γ ⊢ t : A Term t is of (well-formed) type A

Γ ⊢ A ≡ B Well-formed types A and B are equal

Γ ⊢ A tp Type A is well-formed

The missing piece

But how do we arrive at a judgement?

EuroProofNet Working Group 6 Meeting 17.04.2025 6

Rules

Some Natural Deduction Rules

Γ ⊢ s : o Γ ⊢ t : o

Γ ⊢ (s ⇒ t) : o
⇒Type

Γ ⊢ s : o Γ, s ⊢ t

Γ ⊢ s ⇒ t
⇒

Γ ⊢ A ≡ A′ Γ ⊢ B ≡ B′

Γ ⊢ A → B ≡ A′ → B′ →Cong
Γ ⊢ A tp

Γ ⊢ A ≡ A
tpRefl

a tp ∈ T

Γ ⊢ a tp
tp

EuroProofNet Working Group 6 Meeting 17.04.2025 7

Example

Natural Numbers - Theory

types constants/functions axioms

nat tp 0 : nat ∀n,m : nat.(plus (suc m) n =nat plus m (suc n))

suc : nat → nat ∀n : nat.(plus 0 n =nat n)

plus : nat → nat → nat

Natural Numbers - Judgements

• Γ ⊢ ∀i, j, k : nat.(plus i (plus j k) =nat plus (plus i j)k)

• Γ ⊢ suc (plus 0 (suc 0)) : nat

EuroProofNet Working Group 6 Meeting 17.04.2025 8

Semantics

Standard Models - informal

A Standard Model is a tuple (D, J•K) where the class {Dα} consists of

• Dι — a set of arbitrary elements for each base type

• Do = {T, F}
• Dβγ = {f | f : Dβ 7→ Dγ} for all β, γ

and the interpretation function J•K maps

• contexts to sets of variable assignments, s.t. any axioms evaluate to ⊤,

• terms of a type to elements of the corresponding set,

• boolean connectives to their standard interpretation,

• lambda abstractions to functions, and

• applications to function calls on their arguments.

EuroProofNet Working Group 6 Meeting 17.04.2025 9

Semantics

Standard Models - informal

A Standard Model is a tuple (D, J•K) where the class {Dα} consists of

• Dι — a set of arbitrary elements for each base type

• Do = {T, F}
• Dβγ = {f | f : Dβ 7→ Dγ} for all β, γ

and the interpretation function J•K maps

• contexts to sets of variable assignments, s.t. any axioms evaluate to ⊤,

• terms of a type to elements of the corresponding set,

• boolean connectives to their standard interpretation,

• lambda abstractions to functions, and

• applications to function calls on their arguments.

EuroProofNet Working Group 6 Meeting 17.04.2025 9

Semantics

Model for our formulation of Natural Numbers

Continuing our previous example of the natural numbers a possible model would
be

• Dnat = {0N,1N,2N, ...}
• J0K = 0N

• JsucK = 1N+

• JplusK = +

It is easy to see that + satisfies the definitional axioms of plus, making this a
valid model of our theory.

EuroProofNet Working Group 6 Meeting 17.04.2025 10

Semantics

However...

This would now allow us to model arithmetic — due to Gödel it has to be
incomplete!

Henkin Models/General Models

To get sound and complete models, we follow Henkin. In order to regain
completeness, we restrict the domain of functions:

• Dι — a set of arbitrary elements for each base type

• Do = {T, F}
• Dβγ={f | f : Dβ 7→ Dγ} for all β, γ

EuroProofNet Working Group 6 Meeting 17.04.2025 11

Semantics

However...

This would now allow us to model arithmetic — due to Gödel it has to be
incomplete!

Henkin Models/General Models

To get sound and complete models, we follow Henkin. In order to regain
completeness, we restrict the domain of functions:

• Dι — a set of arbitrary elements for each base type

• Do = {T, F}
• Dβγ={f | f : Dβ 7→ Dγ} for all β, γ

EuroProofNet Working Group 6 Meeting 17.04.2025 11

Semantics

However...

This would now allow us to model arithmetic — due to Gödel it has to be
incomplete!

Henkin Models/General Models

To get sound and complete models, we follow Henkin. In order to regain
completeness, we restrict the domain of functions:

• Dι — a set of arbitrary elements for each type α

• Do = {T, F}
• Dβγ⊆{f | f : Dβ 7→ Dγ} for all β, γ

EuroProofNet Working Group 6 Meeting 17.04.2025 12

Extensions

DHOL Syntax

Now we can extend HOL to dependent types by replacing every occurrence of
type-formation...

T ::= ◦ | T,a tp | T, x : A | T, F theory

Γ ::= • | Γ, x : A | Γ, F context

A,B ::= a | o | A → B types

t,u, v ::= x | λx : A.t | tu | t ⇒ u | t =A u | ⊥ terms

EuroProofNet Working Group 6 Meeting 17.04.2025 13

Extensions

DHOL Syntax

Now we can extend HOL to dependent types by replacing every occurrence of
type-formation...

T ::= ◦ | T,a : (Πx : A.)∗ tp | T, x : A | T, F theory

Γ ::= • | Γ, x : A | Γ, F context

A,B ::= at1...tn | o | Πx : A.B types

t,u, v ::= x | λx : A.t | tu | t ⇒ u | t =A u | ⊥ terms

... with the more general, dependent variant

EuroProofNet Working Group 6 Meeting 17.04.2025 14

Rules

HOL-ND to DHOL-ND

Γ ⊢ s : o Γ ⊢ t : o

Γ ⊢ (s ⇒ t) : o
⇒Type

Γ ⊢ s : o Γ, s ⊢ t

Γ ⊢ s ⇒ t
⇒

Γ ⊢ A ≡ A′ Γ ⊢ B ≡ B′

Γ ⊢ A→B ≡ A′→B′ →Cong
Γ ⊢ A tp

Γ ⊢ A ≡ A
tpRefl

EuroProofNet Working Group 6 Meeting 17.04.2025 15

Rules

HOL-ND to DHOL-ND

Γ ⊢ s : o Γ, s ⊢ t : o

Γ ⊢ (s ⇒ t) : o
⇒Type

Γ ⊢ s : o Γ, s ⊢ t

Γ ⊢ s ⇒ t
⇒

Γ ⊢ A ≡ A′ Γ ⊢ B ≡ B′

Γ ⊢ A→B ≡ A′→B′ →Cong
Γ ⊢ A tp

Γ ⊢ A ≡ A
tpRefl

EuroProofNet Working Group 6 Meeting 17.04.2025 16

Rules

HOL-ND to DHOL-ND

Γ ⊢ s : o Γ, s ⊢ t : o

Γ ⊢ (s ⇒ t) : o
⇒Type

Γ ⊢ s : o Γ, s ⊢ t

Γ ⊢ s ⇒ t
⇒

Γ ⊢ A ≡ A′ Γ, x : A ⊢ B ≡ B′

Γ ⊢ Πx : A.B ≡ Πx′ : A′.B′ ΠCong
Γ ⊢ A tp

Γ ⊢ A ≡ A
tpRefl

EuroProofNet Working Group 6 Meeting 17.04.2025 17

Rules

HOL-ND to DHOL-ND

Γ ⊢ s : o Γ, s ⊢ t : o

Γ ⊢ (s ⇒ t) : o
⇒Type

Γ ⊢ s : o Γ, s ⊢ t

Γ ⊢ s ⇒ t
⇒

Γ ⊢ A ≡ A′ Γ, x : A ⊢ B ≡ B′

Γ ⊢ Πx : A.B ≡ Πx′ : A′.B′ ΠCong

a : (Πx1 : A1, ..., Πxn : An) ∈ Γ Γ ⊢ s1 =A1 t1 ... Γ ⊢ sn =An[x1/s1,...,xn−1/sn−1] tn

Γ ⊢ as1...sn ≡ at1...tn
tpRefl

EuroProofNet Working Group 6 Meeting 17.04.2025 18

Example

Fixed Length Lists of Natural Numbers - Theory

types constants/functions

lst : Πn : nat tp nil : lst 0

cons : Πn : nat.nat → lst n → lst (suc n)

app : Πn,m : nat.lst n → lst m → lst (plus n m)

Fixed Length Lists of Natural Numbers - Judgements

• Γ ⊢ ∀n : nat.∀x : lst n.(app 0 n nil x =lst n x)

EuroProofNet Working Group 6 Meeting 17.04.2025 19

Erasure

Simplifying things by making them more complicated

• DHOL is currently barely supported

• To increase usability, an erasure from DHOL to HOL exists

• Basic idea: Capture information lost during erasure in a Partial Equivalence
Relation (PER)

Erasure, abridged

a : Πx1 : A1, ...,Πxn : An tp =

• a tp

• a∗ : A1 → ... → An → a → a → o

• Set of Axioms establishing PER
properties for a∗

x : A =

• x : A

• A∗ xx

EuroProofNet Working Group 6 Meeting 17.04.2025 20

Erasure Example

Erasure, abridged

a : Πx1 : A1, ...,Πxn : An tp =

• a tp

• a∗ : A1 → ... → An → a → a → o

• Set of Axioms establishing PER
properties for a∗

x : A =

• x : A

• A∗ xx

Erasing the Fixed Length List of Natural Numbers

lst : Πn : nat tp =

• lst tp

• lst∗ : nat → lst → lst → o

• + axioms

nil : lst 0 =

• nil : lst

• lst∗ 0 nil nil

EuroProofNet Working Group 6 Meeting 17.04.2025 21

Erasure Example

Erasure, abridged

a : Πx1 : A1, ...,Πxn : An tp =

• a tp

• a∗ : A1 → ... → An → a → a → o

• Set of Axioms establishing PER
properties for a∗

x : A =

• x : A

• A∗ xx

∀ x : A.t =
∀x : A.
A∗ x x ⇒ t

Erasing the Fixed Length List of Natural Numbers

lst : Πn : nat tp =

• lst tp

• lst∗ : nat → lst → lst → o

• + axioms

nil : lst 0 =

• nil : lst

• lst∗ 0 nil nil

∀x : lst 0.t =
∀x : lst.
lst∗ 0 x x ⇒ t

EuroProofNet Working Group 6 Meeting 17.04.2025 22

Motivation

Current Situation

• DHOL’s semantics currently only defined in terms of inference rules

• It would be desireable to have a model theory

• Depending on the goals, different models lend themselves to consideration

Our Goals

• DHOL is implemented in the automated theorem prover Lash

• Unclear whether it is sound to use erased and non-erased terms
“interchangeably”

• We suspect it is!

EuroProofNet Working Group 6 Meeting 17.04.2025 23

Motivation

Current Situation

• DHOL’s semantics currently only defined in terms of inference rules

• It would be desireable to have a model theory

• Depending on the goals, different models lend themselves to consideration

Our Goals

• DHOL is implemented in the automated theorem prover Lash

• Unclear whether it is sound to use erased and non-erased terms
“interchangeably”

• We suspect it is!

EuroProofNet Working Group 6 Meeting 17.04.2025 23

Notation

Family of sets

There are a lot of different ways to express indexed families of sets.
We will write a family of sets Ai with indices in the set I as ⟨Ai⟩i:I. Accessing the
subsets of A will then be written as (A)i.

EuroProofNet Working Group 6 Meeting 17.04.2025 24

Semantics of DHOL

DHOL General Models

Models are defined as previously.
The interesting case for the interpretation function is that of dependent types in
the theory and their realisation:

JT, a : Πx1 : A1 ... Πxn : An tpK = JTK ∪ (⟨...(⟨xan⟩an:An)...⟩a1)a1:A1

Ja t1 ... tnK = (...((JaK)JtnK)...)Jt1K

i.e. the set resulting of instantiating the index family ⟨a⟩ with t1, ..., tn

EuroProofNet Working Group 6 Meeting 17.04.2025 25

Open Challenges

What remains to be done?

• Soundness proofs seem to be straight-forward.

• Translation-preservation (i.e. “For every model M, iff JΓ K |=DHOL
JTK JFK and

Γ ⊢DHOLT F then JΓK |=HOL
JTK JFK”) is some work but I am optimistic.

• However, conversations with colleagues suggest completeness proof might
be a problem.

EuroProofNet Working Group 6 Meeting 17.04.2025 26

Conclusion

• Henkin semantics/General models are an established interpretation of HOL

• We want a HOL-compatible interpretation of DHOL so we can mix reasoning
steps

• General DHOL models are our suggestion to achieve that

• Several open questions remain

EuroProofNet Working Group 6 Meeting 17.04.2025 27

	Translation-Respecting Semantics for Dependently-Typed Higher-Order Logic
	Overview
	Motivation
	Higher-Order Logic
	Dependently-Typed Higher-Order Logic
	Dependently-Typed Higher-Order Logic
	Semantics for DHOL
	Conclusion

