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Semantics of dependent type theory

The semantics of a dependent type theory can be seen as the class of category theoretic
copies of that theory, that encode as morphisms and properties between morphisms the
type constructors.

These models can be formulated e.g. as comprehension categories, display map categories,
categories with families, natural models.

There are essentially two approaches:
▶ a syntactic approach, encoding type constructors into a model in alignment with the

syntax
▶ a categorical approach, characterising type constructors categorically

How does the categorical approach work in axiomatic type theory?
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Intensional theory (with computation rules)

Intensional identity types

⊢ A : Type
x, x′ : A ⊢ x = x′ : Type

x : A ⊢ r(x) : x = x

⊢ A : Type
x, x′ : A; p : x = x′ ⊢ C(x, x′, p) : Type

x : A ⊢ q(x) : C(x, x, r(x))

x, x′ : A; p : x = x′ ⊢ J(q, x, x′, p) : C(x, x′, p)
x : A ⊢ J(q, x, x, r(x)) ≡ q(x)

Dependent sum types

⊢ A : Type
x : A ⊢ B(x) : Type
⊢ Σx:AB(x) : Type

x : A, y : B(x) ⊢ ⟨x, y⟩ : Σx:AB(x)

⊢ A : Type
x : A ⊢ B(x) : Type

u : Σx:AB(x) ⊢ C(u) : Type
x : A; y : B(x) ⊢ c(x, y) : C(⟨x, y⟩)
u : Σx:AB(x) ⊢ split(c, u) : C(u)

x : A; y : B(x) ⊢ split(c, ⟨x, y⟩) ≡ c(x, y)



Axiomatic theory1 (with computation axioms)

Axiomatic identity types

⊢ A : Type
x, x′ : A ⊢ x = x′ : Type

x : A ⊢ r(x) : x = x

⊢ A : Type
x, x′ : A; p : x = x′ ⊢ C(x, x′, p) : Type

x : A ⊢ q(x) : C(x, x, r(x))

x, x′ : A; p : x = x′ ⊢ J(q, x, x′, p) : C(x, x′, p)
x : A ⊢ J(q, x, x, r(x)) ̸≡ q(x)

Axiomatic dependent sum types

⊢ A : Type
x : A ⊢ B(x) : Type
⊢ Σx:AB(x) : Type

x : A, y : B(x) ⊢ ⟨x, y⟩ : Σx:AB(x)

⊢ A : Type
x : A ⊢ B(x) : Type

u : Σx:AB(x) ⊢ C(u) : Type
x : A; y : B(x) ⊢ c(x, y) : C(⟨x, y⟩)
u : Σx:AB(x) ⊢ split(c, u) : C(u)

x : A; y : B(x) ⊢ split(c, ⟨x, y⟩) ̸≡ c(x, y)

1Also known as weak, objective, propositional theory.



Axiomatic theory (with computation axioms)

Axiomatic identity types

⊢ A : Type
x, x′ : A ⊢ x = x′ : Type

x : A ⊢ r(x) : x = x

⊢ A : Type
x, x′ : A; p : x = x′ ⊢ C(x, x′, p) : Type

x : A ⊢ q(x) : C(x, x, r(x))

x, x′ : A; p : x = x′ ⊢ J(q, x, x′, p) : C(x, x′, p)
x : A ⊢ H(q, x) : J(q, x, x, r(x)) = q(x)

Axiomatic dependent sum types

⊢ A : Type
x : A ⊢ B(x) : Type
⊢ Σx:AB(x) : Type

x : A, y : B(x) ⊢ ⟨x, y⟩ : Σx:AB(x)

⊢ A : Type
x : A ⊢ B(x) : Type

u : Σx:AB(x) ⊢ C(u) : Type
x : A; y : B(x) ⊢ c(x, y) : C(⟨x, y⟩)
u : Σx:AB(x) ⊢ split(c, u) : C(u)

x : A; y : B(x) ⊢ σ(c, x, y) : split(c, ⟨x, y⟩) = c(x, y)



How semantics works

In a display map category we are given a family of display maps, denoted as Γ.A → Γ
that interpret type judgements Γ ⊢ A : Type. Term judgements Γ ⊢ t : A are interpreted
as sections Γ → Γ.A of the corresponding display map.

To formulate a model of a type constructor:

▶ In the syntactic approach one copies the type constructor into a display map
category by means of choice functions in the language of the display map category.

▶ In the category theoretic approach one looks for a 1-dimensional categorical
property to give to display maps that characterises the type constructor, allowing a
choice function as in the syntactic approach to be induced by this property.
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How semantics works

Example: Identity types.
▶ Syntactic approach.

For every display map PA : Γ.A → Γ, there is a choice of:
≻ (Form Rule) a display map Γ.A.A▼. idA → Γ.A.A▼;

≻ (Intro Rule) a section:
reflA : Γ.A → Γ.A. idA[vA]

of the display map Γ.A. idA[vA] → Γ.A.

For every display map PA : Γ.A → Γ, every display map:

PC : Γ.A.A▼. idA .C → Γ.A.A▼. idA

and every section
c : Γ.A → Γ.A.C[v•

AreflA]

of PC[v•
A
reflA], there is a choice of:

≻ (Elim Rule) a section:

Jc : Γ.A.A
▼
. idA → Γ.A.A

▼
. idA .C

of the display map Γ.A.A▼. idA .C → Γ.A.A▼. idA;
≻ (Comp Axiom) a section:

Hc : Γ.A → Γ.A. idC[rA][Jc[rA]; c]

of the display map Γ.A. idC[rA][Jc[rA]; c] → Γ.A.
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How semantics works

▶ Categorical approach.
If the identity types are extensional. For every display map PA : Γ.A → Γ, the arrow
vA : Γ.A → Γ.A.A▼ (obtained by factoring the pair (1Γ.A, 1Γ.A) through Γ.A.A▼) is
itself a display map.

If the identity types are intensional/axiomatic. More complicated.

Example: Dependent sum types.
▶ Syntactic approach.

As before, rewriting the inference rules.
▶ Categorical approach.

If the dependent sum types are extensional. For every display map PA : Γ.A → Γ and
every display map PB : Γ.A.B → Γ.A, the composition PAPB is isomorphic to a
display map.

If the dependent sum types are intensional/axiomatic. More complicated.
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How semantics works

For extensional type theory, the categorical approach is clear and conceptually simple to
formulate.

This is not the case for intensional, and axiomatic, type theory: there aren’t obvious
categorical properties to characterise intensional and axiomatic inference rules.

Garner’s approach: in order to characterise intensional type constructors, we can use
2-dimensional models, that still can be converted into ordinary models according to the
syntactic approach, and 2-dimensional - e.g. weakly universal - categorical properties.

This approach can also be used for axiomatic type constructors.

Goal. Having a 2-dimensional structure with natural categorical conditions that allow to
interpret axiomatic theory.
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2-dimensional semantics of axiomatic theories
Display map 2-categories. (2,1)-dimensional categories with a specified class of
1-morphisms, called display maps, that satisfy the following conditions:

1. The class of display maps is closed under 2-dimensional re-indexing.

Γ.A ⇒ ∆.A[f ] Γ.A

∆ Γ ∆ Γ
⌟

f f

2. Every display map is a cloven isofibration.

∆ Γ.A ∆ Γ.A

=

Γ Γ

3. Every display map has an arrow object.

Ω Γ.A s.t. homΓ(∆,Ω) Γ.A.A′.(x = x′)

Γ homΓ(∆,Γ.A)→ Ω

∼= :=

4. The class of display maps is closed under composition, up to equivalence.

Γ.A.B ⇒ Γ.A.B Γ.C ΣB
A

Γ.A Γ Γ.A Γ C

≃ :=
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∆ Γ ∆ Γ
⌟

f f

2. To strictify eliminations in 3-4 in change of producing computation axioms.

∆ Γ.A ∆ Γ.A

=

Γ Γ

3. To have identity types with pseudo-elimination.

Ω Γ.A s.t. homΓ(∆,Ω) Γ.A.A′.(x = x′)

Γ homΓ(∆,Γ.A)→ Ω

∼= :=

4. To have dependent sum types with pseudo-elimination.

Γ.A.B ⇒ Γ.A.B Γ.C ΣB
A

Γ.A Γ Γ.A Γ C

≃ :=



2-dimensional semantics of axiomatic theories

Main theorem. Display map 2-categories are models of axiomatic dependent type
theory.



In detail

Under the hypotheses of the elimination rule of identity types, we are able to build a
pseudo-term:

Γ.A.A▼. idA Γ.A.A▼. idA .C

Γ.A.A▼. idA

J̃c

φA
PC

and, using the cloven isofibration structure on PC , we obtain a section:

t
φA

J̃c
: Γ.A.A▼. idA → Γ.A.A▼. idA .C

of PC , at the cost of introducing an additional 2-cell:

Γ.A.A▼. idA Γ.A.A▼. idA .C

J̃c

t
φA
J̃c

τ
φA
J̃c

We define Jc := t
φA

J̃c
.
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In detail

Now, referring to the diagram:

Γ.A Γ.A.A▼. idA

Γ.A.C[rA] Γ.A.A▼. idA .C

Γ.A Γ.A.A▼. idA

rA

Jc[v
•
AreflA] c J̃cJc

r•A

PC[rA]

⌟
PC

rA

we obtain a 2-cell Jc[v•
AreflA] ⇒ c.

Remark. If PC is normal, then:

JcrA = t
φA∗rA
J̃crA

= t
1rA
J̃crA

= J̃crA

(Jc ⇒ J̃c) ∗ rA = τ
φA∗rA
J̃crA

= τ
1rA
J̃crA

= 1J̃crA

implying that Jc[v•
AreflA] is in fact c.

However, if PC is just cloven, then Jc[v•
AreflA] and c can remain different.
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In detail

An application:

A revisitation of the groupoid model.
We consider the (2,1)-category GRPD of groupoids, functors, and natural transformations
(i.e. natural isomorphisms) with Grothendieck constructions of pseudofunctors
Γ → GRPD as display maps over Γ.

The model of axiomatic theory induced by this display map 2-category does not believe
the judgemental computation rule.

In particular, the judgemental computation rule for intensional identity type constructor
is independent of the axiomatic dependent type theory.
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Do we obtain every model?

No, because every such display map 2-category believes the following rule:

Discreteness
⊢ A : Type

x, y : A; p, q : x = y; α : p = q ⊢ p ≡ q

Theorem. The display map 2-categories are precisely the models (as in the syntactic
formulation) of the axiomatic theory extended with the discreteness rule.
Therefore, this notion of semantics is sound w.r.t. the axiomatic theory of dependent
types, and it is sound and complete w.r.t. the axiomatic theory of dependent types
extended with the discreteness rule.



Do we obtain every model?

No,

because every such display map 2-category believes the following rule:

Discreteness
⊢ A : Type

x, y : A; p, q : x = y; α : p = q ⊢ p ≡ q

Theorem. The display map 2-categories are precisely the models (as in the syntactic
formulation) of the axiomatic theory extended with the discreteness rule.
Therefore, this notion of semantics is sound w.r.t. the axiomatic theory of dependent
types, and it is sound and complete w.r.t. the axiomatic theory of dependent types
extended with the discreteness rule.



Do we obtain every model?

No, because every such display map 2-category believes the following rule:

Discreteness
⊢ A : Type

x, y : A; p, q : x = y; α : p = q ⊢ p ≡ q

Theorem. The display map 2-categories are precisely the models (as in the syntactic
formulation) of the axiomatic theory extended with the discreteness rule.
Therefore, this notion of semantics is sound w.r.t. the axiomatic theory of dependent
types, and it is sound and complete w.r.t. the axiomatic theory of dependent types
extended with the discreteness rule.



Do we obtain every model?

No, because every such display map 2-category believes the following rule:

Discreteness
⊢ A : Type

x, y : A; p, q : x = y; α : p = q ⊢ p ≡ q

Theorem. The display map 2-categories are precisely the models (as in the syntactic
formulation) of the axiomatic theory extended with the discreteness rule.

Therefore, this notion of semantics is sound w.r.t. the axiomatic theory of dependent
types, and it is sound and complete w.r.t. the axiomatic theory of dependent types
extended with the discreteness rule.



Do we obtain every model?

No, because every such display map 2-category believes the following rule:

Discreteness
⊢ A : Type

x, y : A; p, q : x = y; α : p = q ⊢ p ≡ q

Theorem. The display map 2-categories are precisely the models (as in the syntactic
formulation) of the axiomatic theory extended with the discreteness rule.
Therefore, this notion of semantics is sound w.r.t. the axiomatic theory of dependent
types, and it is sound and complete w.r.t. the axiomatic theory of dependent types
extended with the discreteness rule.


