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Summary

Goals
1. Develop a notion of signature, and of model of a signature, for

polymorphic type systems.
⇝ category of models

2. Find sufficient conditions for a signature to have initial model
⇝ the syntax generated by the signature

Motivation
• Obtain recursion principle from initiality
• Specify well-behaved translations between languages
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Overview of Initial Semantics

Signatures
Language constructors are specified by a notion of signature

Models of Signatures
• Substitution is modelled by monoid structure in suitable

monoidal category
• Constructors are modelled by some notion of algebra
• Interplay between constructors and substitution governed by

some mathematical structure

Construction of Syntax
• Syntax is constructed via a suitable colimit construction
• Substitution is constructed via (categorical) recursion scheme



Functorial syntax — syntax with explicit contexts

Inductive LC (X : Set) : Set
| Var : X -> LC X
| App : LC X -> LC X -> LC X
| Abs : LC (X + 1) -> LC X

• Well-scoped lambda terms as a functor

LC : Set→ Set
LC(Γ ) := {set of lambda terms in context Γ }

• Constructors are natural transformations

App : LC× LC→ LC
Abs : LC∗→ LC

with LC∗(X) := LC(X + 1)



Simply-Typed Syntax

• Fix a set T of types, e.g., for STLC:

T ::= B | T1⇒ T2

• Simply-typed syntax with set T of types:

STLC : SetT → SetT

with constructors

Apps,t : STLCs⇒t→ STLCs→ STLCt

Abss,t : STLCs
t → STLCs⇒t



Monads/Monoids for Substitution
• Variables embed into terms

Var : Γ → T(Γ )

• Substitution

subst : (∆→ T(Γ ))→ (T(∆)→ T(Γ ))

or
µ : (T ◦ T)(Γ )→ T(Γ )

gives structure of monad to T
• Besides ([Set,Set],◦), can consider different monoidal

categories and monoids therein, e.g., ([F,Set],◦),
([SetT,SetT],◦)

In short
Syntax with substitution is monoid in a suitable monoidal category



Constructors and Interplay with Substitution

• Language constructors commute, in a suitable sense, with
substitution, e.g.,

subst(f)(App(M,N)) = App(subst(f)(M), subst(f)(N))
subst(f)(Abs(M)) = Abs(subst(↑ f)(M))

• Expressed by saying that

App : LC× LC→ LC
Abs : LC∗→ LC

are morphisms of modules

In short
Module morphisms = natural transformations + commutativity
with substitution



Signatures and Models
Definition (Signature Σ and Model of Σ)

´
T:Monad Module(T)

Monad

Σ

A model M of Σ is a monad T and a T-module morphism

Σ(T)
M
−→ T

Example (Lambda calculus)

ΣLC : M 7→M×M+M∗

A model of ΣLC is a monadM together with two module morphisms

App : M×M→M
Abs : M∗→M



Initial Semantics and Translations

Definition (Syntax generated by a signature)
The syntax generated by Σ is the initial model, if it exists.

• Not all signatures admit a syntax
• Suitable subcategories of signatures that do admit syntax can

be identified

Well-behaved translations via initiality
• Translation from a language S to another T can be specified by

equipping T with the structure of model for S
• Resulting translation commutes with substitution by

construction

• Extensions to include equations between terms and reductions
(operational semantics)
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System F

Types of System F

τ ::= x | B | τ1⇒ τ2 | ∀x.τ

or, in terms of an untyped signature as before,

M 7→ B+M×M+M∗

Terms of System F

t ::= x | λx.t | t1.t2 | Λα.t | t.σ



Syntax as a Functor, à la Hamana

Types
Have a(n untyped) language T : [F,Set]→ [F,Set] for types

Define

G : F→ Cat
G(n) := (F ↓ T(n))× T(n)

The category
´
G has

• objects n | Γ ⊢ τ, with Γ ∈ F ↓ T(n) and τ ∈ T(n)
• arrows (ρ,π) with
• ρ : m→ n such that T(ρ)(τ) = σ and
• π : (F ↓ T(ρ))(Γ )→∆ in F ↓ T(n).

Terms
Terms are given by a functor

´
G→ Set



A More Intuitive(?) View on Syntax

• Replace F by Set
•

[
“ n

Set ↓ T(n)× T(n),Set]

≃
“
n
[Set ↓ T(n)× T(n),Set]

≃
“
n
[SetT(n),SetT(n)]

• This category has a simple, “point-wise” monoidal product



The signature of System F

Models of System F
• Take T := TF : Set→ Set to be initial monad generated by the

signature for types.
• Models of System F are monoids in

›
n[SetT(n),SetT(n)] + some

module morphisms for constructors

Signature of System F is, as before, a section to a forgetful functor

´
T:Monoid Module(T)

Monoid(
›
n[SetT(n),SetT(n)])

Σ

obtained as the sum of several signatures.



Signatures for Constructors of System F

n+ 1 |wk(Γ ) ⊢ t : A
n | Γ ⊢ Λt : ∀A

is specified by the module

Λ(M) := SetT(n)
Lan(wk)
−−−−−→ SetT(n+1)

Mn+1−−→ SetT(n+1)
Lan(Λ)
−−−−→ SetT(n)

n | Γ ⊢ t : ∀τ n | Γ ⊢ A
n | Γ ⊢ t.A : τ[A]

is specified by the module

App(M) := SetT(n)
Mn−→ SetT(n)

Resp
−−→ SetT(n+1)×T(n)

Lan(subst)
−−−−−−→ SetT(n)



Signature and Models for System F

Definition
´
T:Monoid Module(T)

Monoid(
›
n[SetT(n),SetT(n)])

Λ+App+...

Definition
A model of System F in a monoid M is a module morphism

Λ(M) +App(M) + . . .→M



Conclusion

• Work in progress on a novel approach towards initial
semantics for polymorphic type systems
• Advantages (?) compared to Hamana’s approach:
• simpler monoidal structure
• easier to formalize (cf. Dima’s talk this morning)

• Next steps:
• Study general signatures; in particular, identify sufficient

criteria for a signature to yield a syntax
• More complicated systems such as System Fω.

Thanks for your attention!
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