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Contexts in simple and dependent type theory

Contexts in simple type theory are flat:

x1 : A1, . . . , x : nAn ⊢ t(x1, . . . , xn) : B

Contexts in dependent type theory are linearly
ordered by dependency

x1:A1, x2:A2(x1), . . . , xn:A(x1, . . . , xn−1) ⊢ B(x⃗)

. . . but are they really?



The GAT of categories

Consider the generalized algebraic theory TCat of categories:

⊢ O
x y : O ⊢ A(x , y)
x : O ⊢ id(x) : A(x , x)

x y z : O , f : A(x , y) , g : A(y , z) ⊢ g◦f : A(x , z)
x y : O , f : A(x , y) ⊢ id(y)◦f = f
x y : O , f : A(x , y) ⊢ f ◦id(x) = f

w x y z : O , e : A(w , x) , f : A(x , y) , g : A(y , z) ⊢ (g◦f )◦e = g◦(f ◦e)

The context of A(x , y) has the shape

The context of composition g ◦ f has the shape

So maybe finite posets are a more realistic representation of dependent contexts than linear orders?

— It turns out posets not enough!



The need for non-posetal shapes

Consider the following pullback square in the syntactic category C[TCat] of the GAT TCat.

(x : O , f : A(x , x))
⌟

(x y : O , f : A(x , y))

(x : O) (x y : O)

This pullback lives contravariantly over the following pushout of shapes:

⌟

Taking the pushout in posets doesn’t give a well-behaved theory, we have to take it in categories.

More precisely in the following category of finite direct categories.



Finite direct categories

Definition

1. A category C is called direct if there are no infinite inverse paths A0 ← A1 ← A2 ← . . . of
non-identity arrows.

2. A category is called one-way, if the only endomorphisms are identities.

Lemma

1. Direct categories are one-way and skeletal.

2. A finite category is direct iff it is one-way and skeletal.

Definition

FDC is the category of finite direct categories and discrete fibrations.



FDC as a coclan

Among the discrete fibrations, the injective ones (a.k.a. sieve inclusions) are of special importance:
they correspond contravariantly to context extensions.

Injective discrete fibrations are closed under composition and pullback (along arbitrary maps) in FDC,
and the the initial inclusions ∅ ↪→ D are obviously injective.

This means that FDC is a coclan (dual to a clan) with sieve inclusions as codisplay maps.



GATs as monads over type structures

A model of a coclan C is a functor F : Cop → Set which sends 0 to 1 and codisplay-pushouts to
pullbacks.

Idea

• Models of FDC can be viewed as context structures — i.e. the syntactic category of a GAT
corresponding only of sort declarations.

• GATs should be certain monads in bimodules over these context structures, in analogy with
algebraic theories as monads in a Kleisli category of Prof2.

It is unclear whether all GATs can be represented in this way, since it means reordering the axioms to
have sort declarations first.

2 M. Fiore, N. Gambino, M. Hyland, and G. Winskel. “The Cartesian closed bicategory of generalised species of
structures”. English. In: Journal of the London Mathematical Society. Second Series (2008)



Models of FDC

There is another interpretations of models of FDC which is closer to ideas from Chaitanya’s thesis3:

Definition

A locally finite direct category is a small category C all of whose slices C/c are (equivalent to)
finite direct categories.

LFDC is the category of locally finite direct categories and discrete fibrations.

For every LFDC C, we can define a functor

C→ FDC, c 7→ C/c

and this functor is a (Street) fibration of groupoids.

The models of FDC are those LFDCs where the groupoids in this fibration are 0-truncated.

(Thanks to Simon Henry for pointing out that the Set-models of FDC do not comprise all LFDCs.)

3 C. Leena Subramaniam. “From dependent type theory to higher algebraic structures”. In: (Oct. 2021). arXiv:
2110.02804 [math.CT].

https://arxiv.org/abs/2110.02804


LFDCs vs DLFCs

In his thesis, Chaitanya considers direct locally finite categories (DLFCs). These are the
0-extensions in LFDC.

Examples of LFDCs that are not direct:

• The index category of symmetric graphs 0 1 (with an involution on 1) is locally
direct but not direct.

• The terminal LFDC is the category FDC0 of finite direct categories with a terminal object.

It is locally finite direct since we have FDC0/C = C, but not direct, since direct categories may
have automorphisms (i.e. Λ).

Since LFDCs are discretely fibered over FDC0, it turns out that LFDC = F̂DC0 is a presheaf topos!

This topos is étale-subterminal, in the sense that every other topos admits at most one étale
geometric morphism to it.



GATs with well-defined shapes of contexts

In a general GAT, the shape of a context may not be well defined, since contexts of different shapes
may be identified by definitional equality.

Preservation of shapes by definitional equality seems to be a kind of linearity condition.

I expect this to be related to ideas by Chaitanya on linear GATs.



Thank you for your attention!


