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Algorithmic CompSynSem Interfaces within Lλ
ar / Lλ

r Moschovakis [8]

Syn of Lλ
ar /L

λ
r ⇐⇒ Canonical Terms =⇒ Denotations︸ ︷︷ ︸

Denotational Semantics︸ ︷︷ ︸
Algorithmic Semantics︸ ︷︷ ︸

Algorithmic CompSynSem Interfaces

Denotational Semantics of Lλ
ar / Lλ

r : by induction on terms

Reduction Calculus of Lλ
ar / Lλ

r : defined by (10+3+n) red. rules

A ⇒ B (10 by Moschovakis; 3+n by Loukanova) (1)

The reduction calculus of Lλ
ar / Lλ

r is effective (by a theorem):
For every A ∈ Terms, there is unique, up to congruence, canonical
form cf(A), s.th.:

A ⇒cf cf(A) (2)

Algorithmic Semantics of Lλ
ar / Lλ

r
For every algorithmically meaningful A ∈ Terms:

cf(A) determines the algorithm alg(A) for computing den(A)
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Syntax of Lλ
ar / Lλ

r
Algorithmic Development of Scott let-Expressions

Syntax of Type Theory of Algorithms (TTA): Types, Vocabulary

Gallin Types (1975)

τ ::= e | t | s | (τ → τ) (Types)

Abbreviations

σ̃ ≡ (s → σ), for state-dependent objects of type σ̃ (3a)

ẽ ≡ (s → e), for state-dependent entities (3b)

t̃ ≡ (s → t), for state-dependent truth values (3c)

Typed Vocabulary, for all σ ∈ Types

Kσ = Constsσ = {cσ0 , cσ1 , . . . } (4a)

∧,∨,→ ∈ Consts(τ→(τ→τ)), τ ∈ { t, t̃ } (logical constants) (4b)

¬ ∈ Consts(τ→τ), τ ∈ { t, t̃ } (logical constant for negation) (4c)

PureVσ = {vσ0 , vσ1 , . . . } (4d)

RecVσ = MemoryVσ = {pσ0 , pσ1 , . . . } (4e)

PureVσ ∩RecVσ = ∅, Varsσ = PureVσ ∪RecVσ (4f)
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Syntax of Lλ
ar / Lλ

r
Algorithmic Development of Scott let-Expressions

Terms of Type Theory of Algorithms (TTA): Lλ
ar acyclic recursion (Lλ

r full recursion)

A :≡ cσ : σ | Xσ : σ | B(ρ→σ)(Cρ) : σ | λ(vρ) (Bσ) : (ρ → σ) (5a)

| Aσ0
0 where { pσ1

1 := Aσ1
1 , . . . , . . . , pσn

n := Aσn
n } : σ0 (5b)

| ∧ (Aτ
2)(A

τ
1) : τ | ∨ (Aτ

2)(A
τ
1) : τ | → (Aτ

2)(A
τ
1) : τ (5c)

| ¬(Bτ ) : τ (5d)

| ∀(vσ)(Bτ ) : τ | ∃(vσ)(Bτ ) : τ (pure quantifiers) (5e)

| Aσ0
0 such that {Cτ1

1 , . . . ,Cτm
m } : σ′

0 (5f)

cτ ∈ Constsτ , Xτ ∈ PureVτ ∪ RecVτ , vσ ∈ PureVσ

B,C ∈ Terms, pσi
i ∈ RecVσi

, Aσi
i ∈ Termsσi

, C
τj
j ∈ Termsτj

In (5c)–(5e), (5f): τ, τj ∈ { t, t̃ }, t̃ ≡ (s → t) (for propositions)

Acyclicity Constraint (AC), for Lλ
ar; without it, L

λ
r with full recursion

{ pσ1
1 := Aσ1

1 , . . . , pσn
n := Aσn

n } (n ≥ 0) is acyclic iff (6a)

for some rank : {p1, . . . , pn} → N (6b)

if pj occurs freely in Ai, then rank(pi) > rank(pj) (6c)
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Algorithmic Development of Scott let-Expressions

Types of Restrictor Terms

In the restrictor term (5f) / (7),

Aσ0
0 such that {Cτ1

1 , . . . , Cτn
n } : σ′

0 (7)

for each i = 1, . . . , n:

τi ≡ t (state independent truth values), or

τi ≡ t̃ ≡ (s → t) (state dependent truth values)

σ′
0 ≡



σ0, if τi ≡ t, for all i ∈ { 1, . . . , n } (8a)

σ0 ≡ (s → σ), if τi ≡ t̃, for some i ∈ { 1, . . . , n }, and (8b)

for some σ ∈ Types, σ0 ≡ (s → σ)

σ̃0 ≡ (s → σ0), if τi ≡ t̃, for some i ∈ { 1, . . . , n }, and (8c)

there is no σ, s.th. σ0 ≡ (s → σ)
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Syntax of Lλ
ar / Lλ

r
Algorithmic Development of Scott let-Expressions

Definition (Explicit and λ-Calculus Terms)

A ∈ Terms is explicit iff the constant where designating the
recursion operator does not occur in A (cf(A) can be where-term)
A ∈ Terms is a λ-calculus term iff
it is explicit and no recursion variable occurs in it

Definition (Immediate and Proper Terms)

The set ImT of immediate terms is defined by recursion (9)

T :≡ V | p(v1) . . . (vm) | λ(u1) . . . λ(un)p(v1) . . . (vm) (9)

for V ∈ Vars, p ∈ RecV, ui, vj ,∈ PureV,
i = 1, . . . , n, j = 1, . . . ,m, (m,n ≥ 0)
Every A ∈ Terms that is not immediate is proper:

PrT = (Terms− ImT) (10)

Immediate terms do not carry algorithmic sense.
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Algorithmic Development of Scott let-Expressions

Development of Scott let-Expressions by where-Recursion Terms: Key Factors

Dana S. Scott [12] introduced the let-expressions by the
Gordon Plotkin [9] further formalized LCF

Algorithmic Generalization of
Scott let-Expressions by Moschovakis where-Recursion Terms

Algorithmic Syntax-Semantics Interfaces of Lλ
ar / Lλ

r provide algorithmic
generalization of the Scott let-expressions to where-recursion terms.

The algorithmic semantics by Lλ
ar / Lλ

r is provided by:
1 Reduction calculus of Lλ

ar / Lλ
r of (10+) reduction rules, based on:

2 Division of the variables into two kinds:

PureVσ (pure vars for λ-abstraction and quantifiers) (11a)

RecVσ (recursion vars for assignments in recursion terms) (11b)

3 Division of the terms into immediate ImT and proper PrT terms:
PrT = (Terms− ImT)

4 Reductions to canonical forms A ⇒cf cf(A):
cf(A) determines alg(A), for the algorithmically meaningful A ∈ PrT

7 / 35



Algorithmic Syntax-Semantics Interfaces in TTR
Syntax of TTR & Scott let-Expressions

Scott Question
Appendix: Reduction Calculus, Examples, Theoretical Results

Syntax of Lλ
ar / Lλ

r
Algorithmic Development of Scott let-Expressions

Scott let-Expressions and where-Recursion Terms

Assume A ∈ Terms is of the form (12a)–(12b)

A ≡ cfγ*(A) ≡ A0 where {p1 := A1, . . . , pn := An} (12a)

rank(pi) = i, for i ∈ {1, . . . , n} (12b)

The λ-abstraction (13b) is characteristic for the let-expression (13a)
λ-abstraction is not possible directly over pi ∈ RecV, in (12a)–(12b)

In let-expressions (13a), xi ∈ PureVτi , for the λ-abstraction (13b)
The replacements (13c) handle the mismatch pure vars for
λ-abstraction vs. recursion vars for assignments.

Assume the abbreviations (13a)–(13b) in Lλ
ar / Lλ

r :

A′ ≡ let x1 = D1, . . . , xn = Dn inD0 (13a)

≡ λ(x1)
(
. . . [λ(xn)(D0)](Dn) . . .

)
(D1) (13b)

xi ∈ PureVτi , xi ̸∈ Vars(A), n ≥ 1, for i ∈ {1, . . . , n}
Dj ≡ Aj{p1 :≡ x1, . . . , pn :≡ xn}, for j ∈ {0, . . . , n} (13c)

We shall consider a special case of n = 1. It suffices for a demonstration. 8 / 35



Algorithmic Syntax-Semantics Interfaces in TTR
Syntax of TTR & Scott let-Expressions

Scott Question
Appendix: Reduction Calculus, Examples, Theoretical Results

Syntax of Lλ
ar / Lλ

r
Algorithmic Development of Scott let-Expressions

Reduction of Scott let-Expressions to Canonical where-Recursion Terms

Lemma

Assume that A,C,A1 ∈ Terms that are as in (14a)–(14b), Given that:

C,A1 are explicit, irreducible; A1 is proper,
p1 ̸∈ FreeV(C), x1 ̸∈ Vars(A),
z ̸∈ FreeV(λ(−→u )x1(

−→v )):

A ≡ cfγ*(A) ≡ λ(z)
[
C
(
λ(−→u )p1(

−→v )
)]︸ ︷︷ ︸

A0

where { p1 := A1 } (14a)

A0 ≡ λ(z)
[
C
(
λ(−→u )p1(

−→v )
)]

(14b)

Then, the let-expression A′ is not algorithmically equivalent to A

A ̸≈γ∗ A′ ≡ let x1 = A1 in A0 (15a)

≡
[
λ(x1)

(
A0{p1 :≡ x1}

)]
(A1) (15b)

≈γ∗ cfγ*(A′) (15c)
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Reduction of Scott let-Expressions to Canonical where-Recursion Terms: Proof

Proof: The full proof is given in Loukanova [6]. Part of the proof:

A′ ≡
[
λ(x1)

(
A0{p1 :≡ x1}

)]
(A1) (16a)

≡ λ(x1)
[[
λ(z)

[
C
(
λ(−→u )p1(

−→v )
)]︸ ︷︷ ︸

A0

]
{p1 :≡ x1}

]
(A1) (16b)

⇒ λ(x1)
[
λ(z)

[
C(r1)

]
where { r1 := λ(−→u )x1(

−→v ) }
]
(A1) (16c)

by Lemma 3 [6], (lq-comp), (ap-comp)

⇒
[
λ(x1)

[
λ(z)

[
C(r11(x1))

]]
where { r11 := λ(x1)λ(

−→u )x1(
−→v ) }

]
(A1)

(16d)

by (ξ) for λ(x1), (ap-comp)

⇒ λ(x1)
[
λ(z)

[
C(r11(x1))

]]
(A1) where { r11 := λ(x1)λ(

−→u )x1(
−→v ) }
(16e)

by (recap)
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Reduction of Scott let-Expressions to Canonical where-Recursion Terms: Proof Cont.

⇒
[
λ(x1)

[
λ(z)

[
C(r11(x1))

]]
(p1) where {p1 := A1}

]
where { r11 := λ(x1)λ(

−→u )x1(
−→v ) }

(17a)

by (ap), (rec-comp)

⇒ λ(x1)
[
λ(z)

[
C(r11(x1))

]]
(p1) where

{p1 := A1, r11 := λ(x1)λ(
−→u )x1(

−→v ) }
by (head) (17b)

≡ cfγ*(A′) ≈γ∗ A′ (17c)

̸≈γ∗ A (17d)

Thus, (15a) holds: A ̸≈γ∗ A′, by Theorem 6 from (14a) and (17b).
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Syntax of Lλ
ar / Lλ

r
Algorithmic Development of Scott let-Expressions

Proposition

In general, the algorithmic equivalence does not hold between the Lλ
ar

recursion terms of the form (12a) and the λ-calculus terms (13a)–(13b),
which are characteristic for the corresponding let-expressions in
λ-calculus.

Proof: By Lemma 3
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Scott Question

Question rised by Dana S. Scott, on Loukanova [6]:

In Section 2.3 “Denotational Semantics” it looks to me that
you are using the category of sets. Have you thought of other
categories?

Lines of initiated and future work on Type-Theory of Recursion,
incorporating states, situations, situated objects, situated and types:

Lλ
ar type theory of acyclic algorithms that close-off

Lλ
r type theory of full recursion, incl., partial functions

For Lλ
ar and Lλ

r , semantic domains of denotational semantics can be:

of the category sets: Zermelo-Fraenkel Set Theory ZFC: up to now

proper classes of non-well founded sets: to be added

Dependent-Type Theory of Full Recursion & Situated Information
(DTTSitInfo /DTTSI), Loukanova since 1989, recent [1, 5]

For proper classes of non-well founded sets, see Rathjen [10, 11]
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Development of Type-Theory of (Acyclic) Algorithms Lλ
r (Lλ

ar) and
Dependent-Type Theory of Situated Info (DTTSitInfo)

Classes of type theories modeling states & situated info & algorithms

Montague IL ⊊ Gallin TY2 ⊊ Moschovakis Lλ
ar ⊊ Moschovakis Lλ

r (18a)

⊊ DTTSitInfo (18b)

Type-Theory of (Acyclic) Recursion / Algorithms, Lλ
r (Lλ

ar):
provides:

a math notion of algorithm
Computational Semantics of formal (FL) and natural (NL) languages

Lλ
ar / Lλ

r is type theory of algorithms with acyclic / full recursion:
Introduced by Moschovakis [8]
Math development by Loukanova [2, 3, 4, 7, 6]

logic operators, by logic constants of suitable types
underspecification, generalized quantifiers, pure logic quantifiers
extended reduction calculus of Lλ

ar / Lλ
r

proof that Lλ
ar & Lλ

r extend classic λ-calculus, algorithmically, [6]
Dependent-Type Theory of Situated Info (DTTSitInfo / DTTSI)
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Motivation for Type Theory Lλ
ar and Outlook: Theory & Applications

Lλ
ar provides Computational Semantics:

for Natural Language (NL), Formal Languages (FL),
Programming Languages:

for greater semantic distinctions than type-theoretic semantics by
λ-calculi, including any Montagovian grammars for NL

Lλ
ar provides Parametric Algorithms

Parameters can be instantiated depending on context info, specific
areas and and specific domains of applications

Domains and applications using natural language

Syntax-Semantics Interfaces with semantic ambiguities and
underspecification

Lλ
ar with logical operators and pure quantifiers can be used for:

proof-theoretic computational semantics and reasoning

inferences of semantic information

Canonical forms can be used by automatic provers and proof
assistants

Looking Forward with Thanks!
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Reduction Calculus
Some Theoretical Features of Lλ

ar
Examples, Parametric Algorithmic Patterns with Pure Quantifiers

Definition (Congruence Relation, informally)

The congruence relation is the smallest equivalence relation (i.e.,
reflexive, symmetric, transitive) between Lλ

ar-terms, A ≡c B, that is
closed under:

1 operators of term-formation:

application
λ-abstraction
logic operators
pure, logic quantifiers
acyclic recursion
restriction

2 renaming bound variables (pure and recursion), without causing
variable collisions

3 re-ordering of the assignments within the acyclic sequences of
assignments in the recursion terms

4 re-ordering of the restriction sub-terms in the restriction terms
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Reduction Rules (to be continued)

[Congruence] If A ≡c B, then A ⇒ B (cong)

[Transitivity] If A ⇒ B and B ⇒ C, then A ⇒ C (trans)

[Compositionality]

• If A ⇒ A′ and B ⇒ B′, then A(B) ⇒ A′(B′) (ap-comp)

• If A ⇒ B, and ξ ∈ {λ, ∃,∀ }, then ξ(u)(A) ⇒ ξ(u)(B) (lq-comp)

• If Ai ⇒ Bi (i = 0, . . . , n), then

A0 where { p1 := A1, . . . , pn := An }
⇒ B0 where { p1 := B1, . . . , pn := Bn }

(rec-comp)

• If A0 ⇒ B0 and Ci ⇒ Ri (i = 0, . . . , n), then

A0 such that {C1, . . . , Cn }
⇒ B0 such that {R1, . . . , Rn }

(st-comp)
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Reduction Calculus
Some Theoretical Features of Lλ

ar
Examples, Parametric Algorithmic Patterns with Pure Quantifiers

Reduction Rules (to be continued)

[Head Rule] Given that pi ̸= qj and no pi occurs freely in any Bj ,(
A0 where {−→p :=

−→
A }

)
where {−→q :=

−→
B }

⇒ A0 where {−→p :=
−→
A, −→q :=

−→
B }

(head)

[Bekič-Scott Rule] Given that pi ̸= qj and no qi occurs freely in any Aj

A0 where { p :=
(
B0 where {−→q :=

−→
B }

)
, −→p :=

−→
A }

⇒ A0 where { p := B0,
−→q :=

−→
B, −→p :=

−→
A }

(B-S)

[Recursion-Application Rule] Given that no pi occurs freely in B,(
A0 where {−→p :=

−→
A }

)
(B)

⇒ A0(B) where {−→p :=
−→
A }

(recap)
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Reduction Calculus
Some Theoretical Features of Lλ

ar
Examples, Parametric Algorithmic Patterns with Pure Quantifiers

Reduction Rules (to be continued)

[Application Rule] Given that B ∈ PrT is a proper term, and p is fresh,
p ∈

[
RecV−

(
FV

(
A(B)

)
∪ BV

(
A(B)

))]
,

A(B) ⇒
[
A(p) where { p := B }

]
(ap)

[λ and Quantifiers Rules] Let ξ ∈ {λ,∃,∀ }.
Given fresh p′i ∈

[
RecV−

(
FV(A) ∪ BV(A)

)]
, i = 1, . . . , n, for

A ≡ A0 where { p1 := A1, . . . , pn := An } and replacements A′
i in (22):

A′
i ≡

[
Ai

{
p1 :≡ p′1(u), . . . , pn :≡ p′n(u)

}]
(22)

ξ(u)
(
A0 where { p1 := A1, . . . , pn := An }

)
⇒ ξ(u)A′

0 where { p′1 := λ(u)A′
1, . . . , p

′
n := λ(u)A′

n }
(ξ)
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Restriction Rules of Lλ
rar

each Rτi
i ∈ Terms in

−→
R is immediate and τi ∈ { t, t̃ }

each C
τj
j ∈ Terms is proper and τj ∈ { t, t̃ } (j = 1, . . . ,m, m ≥ 0)

a0, cj ∈ RecV (j = 1, . . . ,m) fresh

(st1) Rule A0 is an immediate term, m ≥ 1

(A0 such that {C1, . . . , Cm,
−→
R }) (st1)

⇒ (A0 such that { c1, . . . , cm,
−→
R })

where { c1 := C1, . . . , cm := Cm }

(st2) Rule A0 is a proper term

(A0 such that {C1, . . . , Cm,
−→
R }) (st2)

⇒ (a0 such that { c1, . . . , cm,
−→
R })

where { a0 := A0,

c1 := C1, . . . , cm := Cm }
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Reduction Calculus
Some Theoretical Features of Lλ

ar
Examples, Parametric Algorithmic Patterns with Pure Quantifiers

γ∗-Reduction stronger reduction

Definition (γ∗-condition)

A term A ∈ Terms satisfies the γ∗-condition for an assignment
p := λ(−→u −→σ )λ(vσ)P τ : (−→σ → (σ → τ)), with respect to λ(vσ),
iff A is of the form: (25a)–(25c):

A ≡ A0 where {−→a :=
−→
A, (25a)

p := λ(−→u )λ(v)P, (25b)
−→
b :=

−→
B } (25c)

such that the following holds:

1 v ̸∈ FreeVars(P )

2 All occurrences of p in A0,
−→
A , and

−→
B are occurrences:

in p(−→u )(v)
which are in the scope of λ(v)
modulo renaming the bound variables −→u , v
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(γ∗)-rule

A ≡ A0 where {−→a :=
−→
A, (26a)

p := λ(−→u )λ(v)P, (26b)
−→
b :=

−→
B } (26c)

⇒(γ∗) A
′
0 where {−→a :=

−→
A ′, (26d)

p′ := λ(−→u )P, (26e)
−→
b :=

−→
B′ } (26f)

given that:

A ∈ Terms satisfies the γ∗-condition (in Definition 5) for
p := λ(−→u )λ(v)P : (−→σ → (σ → τ)), with respect to λ(v)
p′ ∈ RecV(−→σ→τ) is a fresh recursion variable
−→
X ′ ≡

−→
X{p(−→u )(v) :≡ p′(−→u )} is the result of the replacements

Xi{p(−→u )(v) :≡ p′(−→u )},
i.e., replacing all occurrences of p(−→u )(v) by p′(−→u ), in all
corresponding parts Xi ≡ Ai, Xi ≡ Bi, in (26a)–(26f), modulo
renaming the variables −→u , v
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Reduction Calculus
Some Theoretical Features of Lλ

ar
Examples, Parametric Algorithmic Patterns with Pure Quantifiers

Theorem (γ∗-Canonical Form: Existence and Uniqueness )

See Loukanova [2, 3, 4], Moschovakis [8].
For every A ∈ Terms, there exists a unique up to congruence, irreducible
term cfγ*(A) ∈ Terms, such that:

1 for some explicit, irreducible terms A0, . . . , An ∈ Terms (n ≥ 0)

cfγ*(A) ≡ A0 where {p1 := A1, . . . , pn := An} (27)

A ⇒ cfγ*(A) (28)

2 for every B, such that A ⇒ B and B is irreducible, it holds that
B ≡c cfγ*(A),
i.e., cfγ*(A) is unique, up to congruence

3 Consts(cfγ*(A)) = Consts(A)

4 FreeV(cfγ*(A)) = FreeV(A)

The proof is by induction on term structure of A, (5a)–(5e), (5f).
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Reduction Calculus
Some Theoretical Features of Lλ

ar
Examples, Parametric Algorithmic Patterns with Pure Quantifiers

Algorithmic Semantic of Lλ
ar / Lλ

r

In the original reduction calculus by Moschovakis [8],
the Canonical Form Theorem 6 is about cf(A). Often, we shall write:

cf(A) ≡ cfγ*(A) (29)

For every term A ∈ Terms, by the Canonical Form Theorem 6:

A ⇒ cfγ*(A)

For every proper (i.e., non-immediate) A ∈ Terms,
cfγ*(A) determines the algorithm alg(A) for computing den(A)

Theorem (Effective Reduction Calculi)

For every term A ∈ Terms, its canonical form cfγ*(A)(A) is effectively
computed, by the extended reduction calculus.
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Definition (of Algorithmic Equivalence / Synonymy)

Two terms A,B ∈ Terms are algorithmically equivalent, A ≈ B, in a
given semantic structure A, i.e., referentially synonymous in A, iff

A and B are both immediate, or
A and B are both proper

and there are explicit, irreducible terms (of appropriate types), A0, . . . ,
An, B0, . . . , Bn, n ≥ 0, such that:

(1) A ⇒cf A0 where { p1 := A1, . . . , pn := An } ≡ cfγ*(A)

(2) B ⇒cf B0 where { p1 := B1, . . . , pn := Bn } ≡ cf(B)

(3) for all i ∈ { 0, . . . , n }
(a) for every x ∈ PureV∪RecV,

x ∈ FreeV(Ai) iff x ∈ FreeV(Bi) (30)

(b) den(Ai) = den(Bi)
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Type Theory Lλ
ar / Lλ

r is more expressive than Gallin TY2

Theorem (Conditions for Explicit and Non-Explicit Terms)

Extending Theorem §3.24, Moschovakis [8].

(1) Necessary Condition for Explicit Terms:
For every explicit A ∈ Terms, there is no p ∈ RecV such that
(a) p is bound via the recursion operator where in cfγ*(A)
(b) p occurs in more than one of the parts Ai (0 ≤ i ≤ n) of cfγ*(A)

(2) Sufficient Condition for Non-Explicit Terms:
Assume that A ∈ Terms and p ∈ RecV are such that
(a) p is bound via the recursion operator where in cfγ*(A)
(b) p occurs in (at least) two parts Ai (0 ≤ i ≤ n) of cfγ*(A), which

have denotations essentially depending on p, e.i.:

Then, there is no explicit term B ∈ Terms, such that B is
algorithmically equivalent to A, B ≈ A,
Therefore, there is no λ-calculus term B, such that B ≈ A.

The proof is by Moschovakis [8] I provide it for the extended Lλ
ar / Lλ

r
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Reductions with Pure Quantifier Rules: Algorithmic Patterns and Instantiations

Assume cube, large0 ∈ Consts(̃e→ t̃), in the typical Aristotelian form:

Some cube is large
render−−−→ B ≡ ∃x(cube(x) ∧ large0(x)) (31a)

B ⇒ ∃x((c ∧ l) where { c := cube(x), l := large0(x) }) (31b)

by 2 x (ap) (ap-comp), (recap), (rec-comp), (head), (lq-comp)

⇒ ∃x(c′(x) ∧ l′(x))︸ ︷︷ ︸
B0 algorithmic pattern

where { (31c)

c′ := λ(x)(cube(x)), l′ := λ(x)(large0(x))︸ ︷︷ ︸
instantiations of memory slots c′, l′

} ≡ cf(B) (31d)

from (31c), by (ξ) to ∃
≈ ∃x(c′(x) ∧ l′(x))︸ ︷︷ ︸

B0 algorithmic pattern

where { c′ := cube, l′ := large0︸ ︷︷ ︸
instantiations of memory slots c′, l′

} ≡ B′ (31e)

by Def. 8 from (31c)–(31d), den(λ(x)(cube(x))) = den(cube),

den(λ(x)(large0(x))) = den(large0)
(31f)
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Repeated Calculations

Some cube is large
render−−−→ T, large ∈ Consts((̃e→ t̃)→(̃e→ t̃)) (32a)

T ≡ ∃x
[
cube(x) ∧ large(cube)(x)︸ ︷︷ ︸

by predicate modification

]
⇒ . . . (32b)

⇒ ∃x
[
(c1 ∧ l) where { c1 := cube(x), (32c)

l := large(c2)(x), c2 := cube }
]

(32d)

⇒ ∃x(c′1(x) ∧ l′(x)) where { c′1 := λ(x)(cube(x)), (32e)

l′ := λ(x)(large(c′2(x))(x)), c
′
2 := λ(x)cube } (32f)

≡ cf(T ) (32e)–(32f) is by (ξ) on (32c)–(32d)

⇒γ∗ ∃x(c′1(x) ∧ l′(x)) where { c′1 := λ(x)(cube(x)), (32g)

l′ := λ(x)(large(c2)(x)), c2 := cube } (32h)

≡ cfγ*(T )

≈ ∃x(c′1(x) ∧ l′(x)) where { c′1 := cube, (32i)

l′ := λ(x)(large(c2)(x)), c2 := cube } (32j)



Some cube is large
render−−−→ C, large ∈ Consts((̃e→ t̃)→(̃e→ t̃))

C ≡ ∃x
[
c′(x) ∧ large(c′)(x)

]︸ ︷︷ ︸
E0

where { c′ := cube } (33a)

⇒ ∃x
[(
c′(x) ∧ l

)
where { l := large(c′)(x) }

]︸ ︷︷ ︸
E1

where { c′ := cube }
(33b)

from (33a), by (ap) to ∧ of E0; (lq-comp); (rec-comp)

⇒
[
∃x

(
c′(x) ∧ l′(x)

)
where { l′ := λ(x)

(
large(c′)(x)

)
}︸ ︷︷ ︸

E2

]
where { c′ := cube }

(33c)

from (33b), by (ξ) to ∃

⇒ ∃x
(
c′(x) ∧ l′(x)

)︸ ︷︷ ︸
C0 an algorithmic pattern

where { c′ := cube, l′ := λ(x)
(
large(c′)(x)

)︸ ︷︷ ︸
instantiations of memory c′, l′

} ≡ cf(C)
(33d)

from (33c), by (head); (cong)
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Proposition

The Lλ
ar-terms C ≈ cf(C) in (33a)–(33d), and many other

Lλ
ar-terms, are not algorithmically equivalent to any explicit terms

Therefore, Lλ
ar is a strict, proper extension of Gallin TY2 and

Montagovian IL.

Therefore:

Placement of Lλ
ar in a class of type theories

Montague IL ⊊ Gallin TY2 ⊊ Moschovakis Lλ
ar ⊊ Moschovakis Lλ

r (34)
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