Functorial models of scope-safe syntax

Dima Szamozvancev
Department of Computer Science and Technology
University of Cambridge, UK
EuroProofNet WG6 Meeting
KU Leuven, 4 April 2024

UNIVERSITY OF
CAMBRIDGE

Q syntax	$1 / 19$	\uparrow	\downarrow	\times
Q variable	$2 / 12$	\uparrow	\downarrow	\times
Q substitution	$1 / 15$	\uparrow	\downarrow	\times

WG6 meeting in Leuven: Schedule and Abstracts

To restate the obvious: syntax formalisation is hard!

Challenges and choices

Encoding of variables
Atoms, numerals, indices, parameters

Representation of binding
Atom equality, de Bruijn, meta-level
Definition of substitution
Single-variable, simultaneous, explicit, nominal, de Bruijn

Formalisation of syntax
Intrinsic, extrinsic, higher-order, least fixed point

Semantic models

Axiomatisation of syntactic structure
Must account for constructors, variables, and substitution

Initiality proof
Syntax is the initial model

Semantic interpretations
Denotational semantics in any model of the syntax

Recursion and induction principles
Define operations and prove properties
on the syntax by instantiating a model

Example: natural numbers

$$
n::=Z \mid S n \quad \in N
$$

Model is a set A with element $z \in A$ and function $s: A \rightarrow A$
$(\mathrm{N}, \mathrm{Z}, \mathrm{S})$ is the initial model: $\llbracket \mathrm{Z} \rrbracket=z$ and $\llbracket \mathrm{S} n \rrbracket=s \llbracket n \rrbracket$

Interpretations in semantic models
$(\mathbb{N}, 0,(-)+1)$ induces $N \rightarrow \mathbb{N}, \quad \llbracket S(S Z) \rrbracket=2 \in \mathbb{N}$
(Set, $\mathbb{1}$, Maybe) induces $N \rightarrow$ Set, $\llbracket S(S Z) \rrbracket=$ Maybe (Maybe $\mathbb{1})$

Recursion and induction principles
$\left(N \rightarrow N\right.$, id, So-) induces $N \rightarrow(N \rightarrow N), \llbracket S^{m} Z \rrbracket=S^{n} Z \mapsto S^{m+n} Z$
(Bool, true, not) induces $N \rightarrow$ Bool, $\quad \llbracket S^{m} Z \rrbracket \Longleftrightarrow m$ is even

Example(?): simply-typed λ-calculus

$$
\begin{array}{rlll}
\alpha, \beta & ::= & \mathrm{B} & \alpha \rightarrow \beta \\
s, t & ::= & x & \mid \lambda x: \alpha . b
\end{array} \quad t s
$$

Environment model in sets
Types are sets, contexts are cartesian products,
terms are functions $\llbracket \Gamma \rrbracket \rightarrow \llbracket \alpha \rrbracket$

$$
\begin{aligned}
\llbracket \Gamma \vdash t: \alpha \rrbracket: \llbracket \Gamma \rrbracket & \rightarrow \llbracket \alpha \rrbracket \\
\llbracket x_{i} \rrbracket(\gamma) & =\gamma_{i} \\
\llbracket \lambda x: \alpha \cdot b \rrbracket(\gamma) & =a \mapsto \llbracket b \rrbracket(\gamma, a) \\
\llbracket t s \rrbracket(\gamma) & =\llbracket t \rrbracket(\gamma)(\llbracket s \rrbracket(\gamma))
\end{aligned}
$$

This is just a particular model of the STLC!

What are models of syntax?

The signature of the syntax is captured as an endofunctor Sum-of-products encoding of the constructor argument
The algebraic datatype is the initial algebra Initiality induces to semantic interpretations

Natural numbers

$$
\begin{gathered}
Z: 1 \rightarrow \mathrm{~N} \\
\mathrm{~S}: \mathrm{N} \rightarrow \mathrm{~N} \\
{[\mathrm{Z}, \mathrm{~S}]:(1+\mathrm{N}) \rightarrow \mathrm{N}} \\
{[\mathrm{Z}, \mathrm{~S}]: F_{\mathrm{N}}(\mathrm{~N}) \rightarrow \mathrm{N}} \\
F_{\mathrm{N}}: \text { Set } \rightarrow \text { Set } \\
F_{\mathrm{N}} \triangleq X \mapsto 1+X
\end{gathered}
$$

Binary trees

$$
\begin{gathered}
\mathrm{Lf}: A \rightarrow \operatorname{Tr}_{A} \\
\mathrm{Br}: \operatorname{Tr}_{A} \times \operatorname{Tr}_{A} \rightarrow \operatorname{Tr}_{A} \\
{[\mathrm{Lf}, \mathrm{Br}]:\left(A+\left(\operatorname{Tr}_{A} \times \operatorname{Tr}_{A}\right)\right) \rightarrow \operatorname{Tr}_{A}} \\
{[\mathrm{Lf}, \mathrm{Br}]: F_{\mathrm{Tr} A}\left(\operatorname{Tr}_{A}\right) \rightarrow \operatorname{Tr}_{A}} \\
F_{\mathrm{Tr} A}: \text { Set } \rightarrow \text { Set } \\
F_{\mathrm{Tr} A} \triangleq X \mapsto A+(X \times X)
\end{gathered}
$$

Does this extend to endofunctors other than Set \rightarrow Set?

The monadic approach

The monadic approach

Bellegarde and Hook (1994): syntax is a monad
Convenient substitution operation on numeric de Bruijn indices

$$
\begin{aligned}
\text { data } \operatorname{Tm}: \text { Set } & \rightarrow \text { Set where } \\
\text { var : } \quad X & \rightarrow \operatorname{Tm} X \\
\text { lam : } \operatorname{Tm} X & \rightarrow \operatorname{Tm} X \\
\text { app }: \operatorname{Tm} X & \rightarrow \operatorname{Tm} X \rightarrow \operatorname{Tm} X
\end{aligned}
$$

Bird and Paterson (1999): syntax is a scope-safe monad Nested datatypes allow for "type-level" de Bruijn indices Monadic structure derived via a generalised fold

$$
\begin{aligned}
& \text { data } \operatorname{Tm}: \text { Set } \rightarrow \text { Set where } \\
& \text { var }: X \rightarrow \operatorname{Tm} X \\
& \text { lam }: \operatorname{Tm}(1+X) \rightarrow \operatorname{Tm}(X) \\
& \text { app }: \operatorname{Tm} X \rightarrow \operatorname{Tm} X \rightarrow \operatorname{Tm} X
\end{aligned}
$$

Altenkirch and Reus (1999): syntax is initial algebra in Set ${ }^{\text {Set }}$ Monadic structure derived by structural or well-founded recursion

Intrinsic scoping

The parameter X exposes the variable scope of a term
$\operatorname{Tm} \emptyset$ is the set of closed terms
$\operatorname{Tm} X \rightarrow \operatorname{Tm}(1+X)$ is term weakening
III-scoped terms can be eliminated
Avoids issues with out-of-scope de Bruijn indices

$$
\begin{aligned}
\operatorname{lam}(\operatorname{lam}(\operatorname{app}(\operatorname{var}(\text { some none }))(\operatorname{var} \text { none }))) & \in \operatorname{Tm} \emptyset \\
\operatorname{app}(\operatorname{var}(\text { some none }))(\operatorname{var} \text { none }) & \in \operatorname{Tm}(1+(1+\emptyset))
\end{aligned}
$$

Flexibility over X allows for some strange terms
Scope safety only works if we start from the empty set
Iam (app (var none) $(\operatorname{var}(\operatorname{some}[\operatorname{var}[], \operatorname{lam}(\operatorname{var}(\operatorname{some}(-0.381 i))])))$
$\in \operatorname{Tm}(\operatorname{List}(\operatorname{Tm} \mathbb{C}))$

Monadic structure

Tm can be shown to have monad structure
Variable embedding $X \rightarrow \operatorname{Tm} X$ is the unit
Nested term collapsing $\operatorname{Tm}(\operatorname{Tm} X) \rightarrow \operatorname{Tm} X$ is the join
Kleisli extension acts as simultaneous substitution

$$
\text { sub : }(X \rightarrow \operatorname{Tm} Y) \rightarrow \operatorname{Tm} X \rightarrow \operatorname{Tm} Y
$$

Defining join or sub directly is not possible
Cannot simply recurse under a binder, as the set is extended
Definition requires functoriality and a lifting operation

$$
\begin{aligned}
& \text { map }:(X \rightarrow Y) \rightarrow \operatorname{Tm} X \rightarrow \operatorname{Tm} Y \\
& \text { lift }:(X \rightarrow \operatorname{Tm} Y) \rightarrow(1+X) \rightarrow(1+\operatorname{Tm} Y)
\end{aligned}
$$

Lifting can itself be derived from swapping

$$
\text { swap : }(1+\operatorname{Tm} X) \rightarrow \operatorname{Tm}(1+X)
$$

$$
\begin{aligned}
& \operatorname{map}:(X \rightarrow Y) \rightarrow \operatorname{Tm} X \rightarrow \operatorname{Tm} Y \\
& \operatorname{map} f(\operatorname{var} x)=\operatorname{var}(f x) \\
& \operatorname{map} f(\operatorname{lam} b)=\operatorname{lam}(\operatorname{map}(1+f) b) \\
& \operatorname{map} f(\operatorname{app} g a)=\operatorname{app}(\operatorname{map} f g)(\operatorname{map} f a) \\
& \text { swap : } 1+\operatorname{Tm} X \rightarrow \operatorname{Tm}(1+X) \\
& \text { swap none }=\operatorname{var} \text { none } \\
& \text { swap (some } t)=\text { map some } t
\end{aligned}
$$

$$
\text { lift }:(X \rightarrow \operatorname{Tm} Y) \rightarrow(1+X) \rightarrow(1+\operatorname{Tm} Y)
$$

$$
\operatorname{lift} f=\operatorname{swap} \circ \operatorname{map} f
$$

$$
\text { sub : }(X \rightarrow \operatorname{Tm} Y) \rightarrow \operatorname{Tm} X \rightarrow \operatorname{Tm} Y
$$

$$
\operatorname{sub} f(\operatorname{var} x)=f x
$$

$$
\operatorname{sub} f(\operatorname{lam} b)=\operatorname{lam}(\operatorname{sub}(\operatorname{lift} f) t)
$$

$$
\operatorname{sub} f(\operatorname{app} g a)=\operatorname{app}(\operatorname{sub} f g)(\operatorname{sub} f a)
$$

$$
\text { join : } \operatorname{Tm}(\operatorname{Tm} X) \rightarrow \operatorname{Tm} X
$$

join = sub id

Monad laws

Monad laws established by induction
Lots of subtle helper lemmas needed

$$
\begin{array}{ll}
\text { lift var } & =\text { id } \\
\text { sub var } & =\text { id } \\
(1+g) \circ(1+\mathrm{f}) & =1+(g \circ f) \\
\operatorname{map} g \circ \operatorname{map} f & =\operatorname{map}(g \circ f) \\
\operatorname{lift} g \circ(1+f) & =\operatorname{lift}(g \circ f) \\
\operatorname{map}(1+g) \circ \operatorname{lift} f & =\operatorname{lift}(\operatorname{app} g \circ f) \\
\operatorname{sub} g \circ \operatorname{map} f & =\operatorname{sub}(g \circ f) \\
\operatorname{map} g \circ \operatorname{sub} f & =\operatorname{sub}(\operatorname{map} g \circ f) \\
\operatorname{lift}(\operatorname{sub} g \circ f) & =\operatorname{sub}(\operatorname{lift} g) \circ \operatorname{lift} f \\
\operatorname{sub} g \circ \operatorname{sub} f & =\operatorname{sub}(\operatorname{sub} g \circ f)
\end{array}
$$

These generalise standard properties of substitution

$$
\begin{gathered}
{[s / x] x=x \quad[s / x] t=t \quad \text { if } x \notin \mathrm{fv}(t)} \\
{[r / y]([s / x] t)=[[r / y] s / x]([r / y] t)}
\end{gathered}
$$

Models of the monadic approach

Models are built on endofunctors on Set

$$
\text { Tm : Set } \rightarrow \text { Set } \quad \operatorname{Tm} \in[\text { Set, Set }]=\text { Set }^{\text {Set }}
$$

Signatures are encoded as endofunctors $\Sigma:$ Set $^{\text {Set }} \rightarrow$ Set $^{\text {Set }}$

$$
\begin{gathered}
\operatorname{lam}: \operatorname{Tm}(1+X) \rightarrow \operatorname{Tm} X \\
\text { app: } \operatorname{Tm} X \rightarrow \operatorname{Tm} X \rightarrow \operatorname{Tm} X \\
\text { alg }=[\text { lam, app }]: \Sigma_{\Lambda}(\operatorname{Tm}) X \rightarrow \operatorname{Tm} X
\end{gathered}
$$

$$
\begin{aligned}
& \Sigma_{\Lambda}: \mathbf{S e t}^{\text {Set }} \rightarrow \mathbf{S e t}^{\text {Set }} \\
& \Sigma_{\Lambda} \triangleq S \in \mathbf{S e t}^{\text {Set }} \mapsto X \in \mathbf{S e t} \mapsto S(1+X)+(S X \times S X)
\end{aligned}
$$

Algebraic model is an (Id $+\Sigma$)-algebra, syntax is the initial model

$$
[\eta, a]: \operatorname{Id}+\Sigma_{\Lambda} S \rightarrow S \quad[\text { var, alg }]: \operatorname{Id}+\Sigma_{\Lambda}(\mathrm{Tm}) \cong \operatorname{Tm}
$$

Syntactic and substitution structure

The Σ-algebra structure represents constructors, the monad structure represents substitution

How do a and μ interact?
Is μ an Σ-algebra homomorphism?
Is a a monad morphism?

Modules over monads

In general, $T T$ is not a Σ-algebra and ΣT is not a monad In our case, $\Sigma T \circ \Sigma T \rightarrow \Sigma T$ is not a monad morphism
A. Hirschowitz and Maggesi (2010): modules over monads

Axiomatisates the relationship of constructors and substitution
Definition (Module over a monad)
Given a monad (T, η, μ) on C, a T-module is a functor $S: C \rightarrow C$ and an action compatible with the monad structure:

$$
\alpha: S T \rightarrow S
$$

$$
\begin{array}{ccc}
S T T & \xrightarrow{S \mu} S T \\
\alpha T \downarrow & & \downarrow \alpha \\
& & \downarrow \\
S T & \\
\hline \alpha & S
\end{array}
$$

Modules over monads

Definition (Linear maps)

A linear map between two T-modules $(R, \alpha) \rightarrow(S, \beta)$ is a morphism $\varphi: R \rightarrow S$ such that

\[

\]

T-modules and linear maps form a category $\operatorname{Mod}(T)$.

Definition (Signature and model)

A signature Σ is a functor mapping a monad T to a module $\Sigma(T) \in \operatorname{Mod}(T)$ for the monad. A model is a monad T with a module morphism $\Sigma(T) \rightarrow T$.

Modules over monads

Example

The endofunctor $\delta:[C, C] \rightarrow[C, C], \delta(A)(X) \triangleq A(1+X)$ lifts to modules: given $(S, \alpha: S T \rightarrow S$), we have
$(\delta(S) \circ T)(A)=S(1+T A) \xrightarrow{S_{\text {swap }}} S(T(1+A)) \xrightarrow{\alpha_{1+A}} S(1+A)=\delta(S)(A)$
Example
The endofunctor Σ_{Λ} is a signature that maps a monad T to $\delta T+T \times T$. A model is a monad T with module morphism $[l, a]: \delta T+(T \times T) \rightarrow T:$

Signatures with strength

Structure map $\Sigma T \circ T \Longrightarrow \Sigma T$ often given via $\mu: T T \Longrightarrow T$

Corresponds to recursive multiplication of subterms

Definition
Signature with strength A signature with strength Σ, σ is an endofunctor $\Sigma:[C, C] \rightarrow[C, C]$ with natural transformation

$$
\sigma_{A,(B, p)}: \Sigma A \circ B \rightarrow \Sigma(A \circ B):[C, C] \times \mathrm{Id} /[C, C] \rightarrow[C, C]
$$

satisfying unit and associativity axioms.
A signature with strength is a signature in the previous sense

$$
\Sigma(T) \circ T \xrightarrow{\sigma_{T,(T, n)}} \Sigma(T \circ T) \xrightarrow{\Sigma \mu} \rightarrow \Sigma T
$$

Initial-algebra semantics

We can now show that (Tm, alg) is the initial model for Σ_{Λ}
Theorem
For all models $(T \in \operatorname{Mon}(C), a: \Sigma T \rightarrow T \in \operatorname{Mod}(T))$, there exists a unique monad morphism sem: $\mathrm{Tm} \Longrightarrow T$ satisfying:

$$
\begin{gathered}
\Sigma(\operatorname{Tm})(X) \xrightarrow{\text { alg }} \operatorname{Tm}(X) \\
\Sigma(\operatorname{sem})_{X} \downarrow \\
\Sigma(T)(X) \xrightarrow[a]{ } T(X)
\end{gathered}
$$

The map is a monad and module homomorphism
Preserves constructors and substitution
Satisfies the semantic substitution lemma

Monadic approach

Mature and well-developed theory
Work on denotational and operational semantics
equations, translations, non-wellfounded syntax, etc. ${ }^{1}$
Untyped setting easy to implement in functional languages Laws or typed syntax still needs dependent types

Endofunctors allow for more variation than needed Context extension enough for most simple syntaxes

Endofunctors on endofunctors, modules, over monads, application vs. composition can get confusing Loose hierarchy between levels of contexts, terms, signatures

$$
(\delta(S) \circ T)(T X) \quad \text { vs } \quad(\delta(S T) \circ T)(X) \quad \text { vs } \quad \delta(S \circ T T)(X)
$$

[^0]The presheaf approach

The presheaf approach

Fiore, Plotkin, and Turi (1999): syntax lives in presheaves Sets varying over a category of contexts and renamings

Definition (Presheaf)
A (covariant) presheaf on a small category \mathbb{C} is a functor $P: \mathbb{C} \rightarrow$ Set.
Presheaves and natural transformations form the category
$\widetilde{\mathbb{C}} \triangleq$ Set $^{\complement}$. S-sorted presheaves form the S-indexed category $\widetilde{\mathbb{C}}^{s}$.
Example
$\mathrm{Tm} \in \widetilde{\mathbb{F}}^{S}$ for \mathbb{F} the category of contexts over S is the family of sets $\operatorname{Tm}_{\alpha}(\Gamma) \triangleq\{t \mid \Gamma \vdash t: \alpha\}$, with the variable renaming operation

$$
\text { ren }:(\Gamma \rightarrow \Delta) \rightarrow \operatorname{Tm}_{\alpha}(\Gamma) \rightarrow \operatorname{Tm}_{\alpha}(\Delta)
$$

Renaming structure

Like endofunctors, renaming is baked into the definition Most often instantiated as weakening with $\Gamma \rightarrow \alpha \cdot \Gamma$

Unlike endofunctors, contexts are a lower-class object to terms Renaming rules are not arbitrary functions between sets

This helps eliminate confusion between context-, term- and signature-level operations
Presheaves cannot be composed or applied to each other
Presheaves over \mathbb{F} are equivalent to finitary endofunctors

$$
\text { Set }^{\mathbb{F}} \simeq[\text { Set }, \text { Set }]_{f}
$$

Intrinsic typing and scoping

Presheaves conveniently capture intrinsic typing and scoping A term $t \in T_{\alpha} \Gamma$ is well-scoped in context Γ and has type α

There is a distinguished presheaf of variables
The set is inhabited if τ appears in Γ

$$
V_{\alpha} \Gamma \triangleq \mathcal{Y}[\alpha](\Gamma)=\mathbb{F}([\alpha], \Gamma) \quad[\alpha] \xrightarrow{\text { new }} \alpha \cdot \Gamma \stackrel{\text { old }}{\longleftrightarrow} \Gamma
$$

Context extension is equivalently presheaf exponentiation by V Evaluation corresponds to strengthening

$$
\delta_{\tau}(P)_{\alpha} \Gamma \triangleq P_{\alpha}(\tau \cdot \Gamma) \cong P_{\alpha}^{V_{\tau}}(\Gamma) \quad \delta_{\tau}(P)_{\alpha} \times V_{\tau} \cong P_{\alpha}^{V_{\tau}} \times V_{\tau} \rightarrow P_{\alpha}
$$

Signatures and models

Constructors combine into signature endofunctor $\Sigma: \widetilde{\mathbb{F}}^{S} \rightarrow \widetilde{\mathbb{F}}^{S}$ Matching input and output sorts introduces some complexity

$$
\Sigma_{\Lambda} P_{\tau} \triangleq\left[\sum_{\alpha, \beta \in S} \delta_{\alpha} P_{\beta} \times(\tau=(\alpha \rightarrow \beta))\right]+\left[\sum_{\alpha \in S} P_{\alpha \rightarrow \tau} \times P_{\tau}\right]
$$

Algebraic model is a $V+\sum$-algebra, syntax is the initial model

$$
[v, a]: V+\Sigma_{\Lambda}(A) \rightarrow A \quad[\text { var, alg }]: V+\Sigma_{\Lambda}(\operatorname{Tm}) \cong \operatorname{Tm}
$$

$$
\begin{aligned}
& \text { var: } V_{\alpha} \Gamma \rightarrow \operatorname{Tm}_{\alpha} \Gamma \\
\text { alg }= & {\left[\operatorname{lam}: \operatorname{Tm}_{\beta}(\alpha \cdot \Gamma) \rightarrow \operatorname{Tm}_{\alpha \rightarrow \beta}(\Gamma)\right.} \\
& \text { app: } \left.\operatorname{Tm}_{\alpha \rightarrow \beta}(\Gamma) \times \operatorname{Tm}_{\alpha}(\Gamma) \rightarrow \operatorname{Tm}_{\alpha}(\Gamma)\right]
\end{aligned}
$$

Substitution structure

Like endofunctors, substitution amounts to additional structure Analogous to monad multiplication or bind

Unlike endofunctors, a presheaf cannot be a monad $\mathcal{A} \circ \mathcal{A} \rightarrow \mathcal{A}$ is not defined, since \mathcal{A} is not an endofunctor

First solution: a V-relative monad structure ${ }^{2}$

Definition (Relative monad)

For functors $J, F: C \rightarrow \mathcal{D}, F$ is a J-relative monad if it comes with a unit and extension operator satisfying unit and associativity laws:

$$
\eta_{A}: J A \rightarrow F A \quad(-)^{\dagger}: \mathcal{D}(J A, F B) \rightarrow \mathcal{D}(F A, F B)
$$

Example
A presheaf with substitution structure is a V-relative monad:

$$
v: V_{\alpha} \Gamma \rightarrow P_{\alpha} \Gamma \quad(-)^{\dagger}: \operatorname{Set}\left(V_{\alpha} \Gamma, P_{\alpha} \Delta\right) \rightarrow \mathbf{S e t}\left(P_{\alpha} \Gamma, P_{\alpha} \Delta\right)
$$

[^1]
Substitution structure

Second solution: monoid for the substitution tensor product ${ }^{3}$

Definition (Monoidal category)

A monoidal category C has a unit object $I \in C$ and a tensor product $(-) \otimes(=): C \times C \rightarrow C$ with natural isomorphisms

$$
\lambda: I \otimes B \cong B \quad \rho: A \cong A \otimes I \quad \alpha:(A \otimes B) \otimes C \cong A \otimes(B \otimes C)
$$

satisfying two coherence laws.

Example

Presheaves have a monoidal structure with unit V and tensor

$$
(P \otimes Q)_{\alpha}(\Delta) \triangleq \int^{\Gamma \in \mathbb{F}} P_{\alpha} \Gamma \times{ }^{\Gamma} Q_{\Delta}
$$

where ${ }^{\Gamma} Q_{\Delta}=\prod_{\alpha \in S} \boldsymbol{\operatorname { S e t }}\left(V_{\alpha} \Gamma, Q_{\alpha} \Delta\right)$.

[^2]
Substitution structure

$$
\begin{gathered}
(P \otimes Q)_{\alpha}(\Delta) \triangleq \int^{\Gamma \in \mathbb{F}} P_{\alpha} \Gamma \times{ }^{\Gamma} Q_{\Delta} \quad{ }^{\Gamma} Q_{\Delta}=\prod_{\alpha \in S} \operatorname{Set}\left(V_{\alpha} \Gamma, Q_{\alpha} \Delta\right) \\
\left(\Gamma, t \in P_{\alpha} \Gamma, \sigma:{ }^{\Gamma} Q_{\Delta}\right) \in(P \otimes Q)_{\alpha}(\Delta)
\end{gathered}
$$

The coend performs a quotienting on the tuples
Enforces an internal renaming-invariance

$$
(\Gamma, t, \sigma \circ \rho)=(\Delta, P(\rho)(t), \sigma) \in(P \otimes Q)_{\alpha} \Theta \quad \text { for } \rho: \Gamma \rightarrow \Delta, \sigma:{ }^{\Delta} Q_{\Theta}
$$

Essential for the invertibility of structure maps

$$
(\Gamma, t, \rho) \mapsto P(\rho)(t) \mapsto(\Delta, P(\rho)(t), \mathrm{id})=(\Gamma, t, \rho)
$$

Substitution structure

Definition

A monoid in a monoidal category (C, I, \otimes) is an object M with unit $\eta: I \rightarrow M$ and multiplication $M \otimes M \rightarrow M$ satisfying unit and associativity laws.

Example

A monoid M in the category of presheaves comes with a variable embedding $\eta: V \rightarrow M$ and a substitution operation

$$
\mu: M \otimes M \rightarrow M \quad(M \otimes M)_{\alpha} \Delta=\left\{M_{\alpha} \Gamma \times{ }^{\Gamma} M_{\Delta} \rightarrow M_{\alpha} \Gamma\right\}_{\alpha \in S, \Gamma, \Delta \in \mathbb{F}}
$$

natural in Δ and dinatural in Γ :
$\mu(\Gamma, t, M(\rho) \circ \sigma)=M(\rho)(\mu(\Gamma, t, \sigma)) \quad \mu(\Gamma, t, \sigma \circ \rho)=\mu(\Delta, M(\rho)(t), \sigma)$

Models in presheaves

Presheaves with compatible algebra and monoid structures are semantic models

Definition (Σ-monoids)

Given a strong endofunctor $\Sigma: \widetilde{\mathbb{F}}^{S} \rightarrow \widetilde{\mathbb{F}}^{S}$, a Σ-monoid is a monoid (M, η, μ) with Σ-algebra structure $a: \Sigma M \rightarrow M$ satisfying

The pointed strength $\sigma_{P, Q}: \Sigma P \otimes Q \rightarrow \Sigma(P \otimes Q)$ pushes substitutions into subterms and under binders

Initial-algebra semantics

We may again show that Tm is the initial Σ_{Λ}-monoid
Involves:

- Equipping Tm with a renaming operation
- Defining the strength $\Sigma \mathrm{Tm} \otimes \mathrm{Tm} \rightarrow \Sigma(\mathrm{Tm} \otimes \mathrm{Tm})$
- Deriving the substitution operation $\mathrm{Tm} \otimes \mathrm{Tm} \rightarrow \mathrm{Tm}$
- Proving functoriality, strength, and substitution laws
- Inducing generic semantics $\mathrm{Tm} \rightarrow M$ into any Σ-monoid M
- Proving the semantics preserves Σ-monoid structure

Presheaf approach

Widely extensible mathematical framework
Polymorphism, equational logic, second-order algebraic theories, linearity, metavariable calculi, etc. ${ }^{4}$

Contexts, naturality, monoids, etc. easier to keep straight Clear hierarchy of concepts and properties

Limited work on reduction and operational semantics
No obvious way to incorporate with current models
Mathematically involved and hard/impossible to formalise fully Complex nesting of categorical structures, quotienting

[^3]
The family approach

Presheaf model as formalisation framework

The presheaf model is not amenable to faithful formalisation Abstract categorical concepts not always constructive

Complex hierarchy of structures computationally expensive Agda grinds to a halt when checking functoriality and naturality

Requiring presheaf actions everywhere is overkill
Only needed for weakening in capture-avoiding substitution
In some places, renaming is undesirable Metavariables should not be renamed, but need to conform to setting

The family approach

Fiore and Sz. (2022): indexed families of sets almost enough Where renaming is needed, it can be requested explicitly

Mathematical basis for common formalisation methods
Puts previously ad-hoc techniques on a formal foundation
Works around the need for quotienting
Weaker structures, more general definitions
Retains the initiality property of syntax
Practically usable framework based on a sound theory

Intrinsically-typed syntax

Instead of presheaves, we work with indexed families of sets
Direct to represent in proof assistants

$$
\text { Fam : } S \rightarrow S^{*} \rightarrow \text { Set }
$$

Family of variables and terms are inductive datatypes
Standard dependently-typed formalisation technique

```
data S:Set where
    B :S
\[
\rightarrow_{-}: S \rightarrow S \rightarrow S
\]
```

data Ctx : Set where
\emptyset : Ctx
_- $: S \rightarrow C t x \rightarrow C t x$
data I: Fam where
new: $\quad \mathrm{I} \alpha(\alpha \cdot \Gamma)$
old $: \mathrm{I} \beta \Gamma \rightarrow \mathrm{I} \beta(\alpha \cdot \Gamma)$
data Tm: Fam where
var : I $\alpha \Gamma \rightarrow \operatorname{Tm} \alpha \Gamma$
app : $\operatorname{Tm}(\alpha \rightarrow \beta) \Gamma \rightarrow \operatorname{Tm} \alpha \Gamma \rightarrow \operatorname{Tm} \beta \Gamma$
lam : $\operatorname{Tm} \beta(\alpha \cdot \Gamma) \rightarrow \operatorname{Tm}(\alpha \rightarrow \beta) \Gamma$

Renaming structure

Families cannot be renamed a priori
A family is fully determined by its elements
If renaming is needed, it's axiomatised as a co/algebra structure Free presheaf monad and cofree presheaf comonad

$$
\begin{aligned}
& \diamond X_{\alpha} \Delta \triangleq \sum_{\Gamma \in S^{*}} X_{\alpha} \Gamma \times(\Gamma \rightarrow \Delta) \quad \square X_{\alpha} \Gamma \triangleq \prod_{\Delta \in S^{*}}(\Gamma \rightarrow \Delta) \rightarrow X_{\alpha} \Delta \\
& \text { ren }: \prod_{\Gamma, \Delta \in S^{*}}(\Gamma \rightarrow \Delta) \rightarrow \operatorname{Tm}_{\alpha} \Gamma \rightarrow \operatorname{Tm}_{\alpha} \Delta \cong \diamond \operatorname{Tm} \rightarrow \mathrm{Tm} \cong \operatorname{Tm} \rightarrow \square \operatorname{Tm}
\end{aligned}
$$

Families with renaming structure are equivalent to presheaves
The structure is only requested when needed

Substitution structure

$$
(X \oplus Y)_{\alpha} \Delta \triangleq \sum_{\Gamma \in S^{*}} X_{\alpha} \Gamma \times{ }^{\Gamma} Y_{\Delta}
$$

Substitution tensor product no longer monoidal No quotienting to enforce renaming-invariance
Weaker skew-monoidal structure
Structure maps and laws are not invertible

$$
\lambda: I \oplus Y \rightarrow Y \quad \rho: X \rightarrow X \oplus I \quad \alpha:(X \oplus Y) \oplus Z \rightarrow X \oplus(Y \oplus Z)
$$

\diamond-algebras are equivalently modules for I
$\diamond X$ combines a term with a substitution of variables for variables

$$
\diamond X \cong X \oplus I \quad(\diamond X \rightarrow X) \cong X \otimes I \rightarrow X
$$

Substitution monoids same as before May ask for a monoid with compatible \diamond-algebra structure

Signatures with pointed strength

Signatures are family endofunctors with a pointed \diamond-strength Point maps variables to variables, renaming allows weakening

$$
\sigma_{X, Y}: \Sigma X \oplus Y \rightarrow \Sigma(X \oplus Y): \text { Fam } \times I / \diamond \text {-AIg } \rightarrow \text { Fam }
$$

For context extension δ, strength is defined via lift
Extends both contexts of a substitution rule

$$
\begin{aligned}
& \operatorname{lift}_{(X, p, x)}:{ }^{\Gamma} Y_{\Delta} \rightarrow{ }^{(\tau \cdot \Gamma)} Y_{(\tau \cdot \Delta)}: I / \diamond \text {-Alg } \rightarrow \text { Set } \\
& \operatorname{lift}_{(X, p, x)} \sigma \text { new } \triangleq p \text { new } \\
& \operatorname{lift}_{(X, p, x} \sigma(\mathrm{old} v) \triangleq x(\sigma v, \text { old }) \\
& \sigma_{X, Y}^{\delta}(\Gamma, t, \sigma) \triangleq(\tau \cdot \Gamma, t, \text { lift } \sigma)
\end{aligned}
$$

Signatures with pointed strength

Problem: \diamond-Alg is not monoidal, σ is not associative
No quotienting to equate reassociated substitutions
Solution: associativity in terms of balanced maps
Functions $f: X \oplus Y \rightarrow Z$ that equate quotientable tuples

$$
f(\Gamma, t, \sigma \circ \rho)=f(\Delta, x(t, \rho), \sigma)
$$

$(\Sigma W \oplus X) \oplus Y \xrightarrow{\sigma_{X, Y} \oplus Z} \Sigma(X \oplus Y) \oplus Z \xrightarrow{\sigma_{X \oplus Y, Z}} \Sigma((X \oplus Y) \oplus Z) \xrightarrow{\Sigma \alpha_{X, Y, Z}} \Sigma(X \oplus(Y \oplus Z))$

Associativity law for σ^{δ} generalises all the lemmas for lift
$\operatorname{lift}(\varsigma \circ \rho)=\operatorname{lift} \varsigma \circ \operatorname{lift}_{I} \rho$
lift $(\operatorname{ren} \varrho \circ \sigma)=\operatorname{ren}\left(\operatorname{lift}_{I} \varrho\right) \circ \operatorname{lift} \sigma$
lift $(\operatorname{sub} \varsigma \circ \sigma)=\operatorname{sub}($ lift $\varsigma) \circ \operatorname{lift} \sigma$

Models and initiality

Models are Σ-monoids as before
Monoids are automatically \diamond-algebras: renaming is substitution of variables for variables

Family of terms is the initial Σ-monoid Both renaming and substitution is induced by initiality

The initial model in Fam is provably equivalent to the model in $\widetilde{\mathbb{F}} S$ All the theory faithfully lifts to the presheaf model

The family model

First steps of adapting the presheaf model to a constructive setting Promising and categorically motivated formulation

Simple formalisation in dependently-typed proof assistants
Code generation tool to go from a syntax description to an intrinsically-typed metatheoretic framework

Elegantly incorporates second-order features Metavariables, metasubstitution, equational systems

More complex type theories nontrivial to adapt Linear substitutions, polymorphism, etc. still heavy to formalise

Syntax description file

$$
\operatorname{syntax} \Lambda
$$

type
N: o-ary
_ $_{-}$: 2-ary
term

$$
\begin{array}{llll}
\text { app } & :(\alpha \rightarrow \beta) & \alpha & \rightarrow \beta \\
\text { lam } & : \alpha . \beta & & \rightarrow(\alpha \rightarrow \beta)
\end{array}
$$

Syntactic and semantic operations

$$
\begin{aligned}
& \text { wkn : } \Lambda \alpha \Gamma \rightarrow \Lambda \alpha(\beta \cdot \Gamma) \\
& \text { [_/]: } \Lambda \alpha \Gamma \rightarrow \Lambda \beta(\alpha \cdot \Gamma) \rightarrow \Lambda \beta \Gamma \\
& \llbracket _\rrbracket: \Lambda \alpha \Gamma \rightarrow M \alpha \Gamma
\end{aligned}
$$

Correctness laws

$$
\begin{aligned}
& \text { syn-sub-lemma : }[r /]([s /] t) \equiv[[r /] s /]([r /] t) \\
& \text { sem-sub-lemma : } \llbracket[s /] t \rrbracket \equiv M . \operatorname{sub} \llbracket s \rrbracket \llbracket t \rrbracket
\end{aligned}
$$

Conclusions

Finding models of syntax enables generic metatheory Derivation of tedious boilerplate code for free

Functorial models make context-dependence explicit Functoriality highlights importance of renaming

Family model weakens assumptions for the sake of practicality Also clarifies roles of variables, weakening, etc.

Paper and $\binom{$ currently }{ broken } Agda library can be found at

 https://tinyurl.com/agda-soasThank you!

References I

Ahrens, Benedikt (2016). "Modules over relative monads for syntax and semantics". In:
Mathematical Structures in Computer Science 26.1, pp. 3-37. Do:
10.1017/S0960129514000103.

Ahrens, Benedikt, André Hirschowitz, Ambroise Lafont, and Marco Maggesi (2021).
"Presentable signatures and initial semantics". In: Logical Methods in Computer Science
Volume 17, Issue 2. Dol: 10.23638/LMCS-17(2:17)2021.
Ahrens, Benedikt and Julianna Zsido (2011). Initial Semantics for higher-order typed syntax in Coq. arXiv: 1012.1010 [cs.LO].
Altenkirch, Thorsten, James Chapman, and Tarmo Uustalu (2010). "Monads Need Not Be Endofunctors". In: Proceedings of the $13^{\text {th }}$ International Conference on Foundations of Software Science and Computation Structures (FoSSaCS 2010). Ed. by Luke Ong. Lecture Notes in Computer Science (LNCS). Springer, pp. 297-311. DoI: 10.1007/978-3-642-12032-9_21.

Altenkirch, Thorsten and Bernhard Reus (1999). "Monadic Presentations of Lambda Terms
Using Generalized Inductive Types". In: Proceedings of the 13th International Workshop on Computer Science Logic (CSL 1999). Vol. 1683. Lecture Notes in Computer Science (LNCS). Springer, pp. 453-468. Dol: 10.1007/3-540-48168-0_32.
Bellegarde, Françoise and James Hook (1994). "Substitution: A Formal Methods Case Study
Using Monads and Transformations". In: Science of Computer Programming 23.2-3, pp. 287-311. Dol: 10.1016/0167-6423(94)00022-0.
Bird, Richard and Ross Paterson (1999). "De Bruijn Notation as a Nested Datatype". In:
Journal of Functional Programming 9.1, pp. 77-91. Dol: 10.1017/S0956796899003366.

References II

Fiore, Marcelo (2008). "Second-Order and Dependently-Sorted Abstract Syntax". In:
Proceedings of the $23^{\text {rd }}$ Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2008), pp. 57-68. Dol: 10.1109/LICS.2008.38.

Fiore, Marcelo and Makoto Hamana (2013). "Multiversal Polymorphic Algebraic Theories:
Syntax, Semantics, Translations, and Equational Logic". In: Proceedings of the 28th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2013). IEEE Computer Society, pp. 520-529. Dol: 10.1109/LICS.2013.59.
Fiore, Marcelo and Chung-Kil Hur (2010). "Second-Order Equational Logic (Extended
Abstract)". In: Proceedings of the $24^{\text {th }}$ International Workshop on Computer Science Logic (CSL 2010). Ed. by Anuj Dawar and Helmut Veith, pp. 320-335. dol:
10.1007/978-3-642-15205-4_26.

Fiore, Marcelo and Ola Mahmoud (2010). "Second-Order Algebraic Theories". In: Proceeding's
of the 35th International Symposium on Mathematical Foundations of Computer Science
(MFCS 2010). Ed. by Petr Hliněný and Antonín Kučera. Vol. 6281. Lecture Notes in
Computer Science (LNCS). Springer, pp. 368-380. Dol:
10.1007/978-3-642-15155-2_33.

Fiore, Marcelo, Gordon Plotkin, and Daniele Turi (1999). "Abstract Syntax and Variable
Binding". In: Proceedings of the $14^{\text {th }}$ Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 1999), pp. 193-202. DoI: 10.1109/LICS.1999.782615.
Fiore, Marcelo and Dmitrij Szamozvancev (2022). "Formal Metatheory of Second-Order
Abstract Syntax". In: Proceedings of the ACM on Programming Languages 6.POPL,
53:1-53:29. DOI: 10.1145/3498715.

References III

Hirschowitz, André, Tom Hirschowitz, and Ambroise Lafont (2020). "Modules over Monads and Operational Semantics". In: Proceedings of the $5^{\text {th }}$ International Conference on Formal Structures for Computation and Deduction (FSCD 2020). Ed. by Zena M. Ariola. Vol. 167. Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 12:1-12:23. DoI: 10.4230/LIPICS.FSCD. 2020.12.

Hirschowitz, André and Marco Maggesi (2010). "Modules over Monads and Initial Semantics". In: 208.5, pp. 545-564. Dol: 10.1016/j.ic.2009.07.003.
Hirschowitz, André and Marco Maggesi (2012). "Initial Semantics for Strengthened Signatures". In: Proceedings of the $8^{\text {th }}$ Workshop on Fixed Points in Computer Science (FICS 2012). Ed. by Dale Miller and Zoltán Ésik. Vol. 77. EPTCS, pp. 31-38. DoI: 10.4204/EPTCS.77.5.

Power, John (2007). "Abstract Syntax: Substitution and Binders". In: Electronic Notes in Theoretical Computer Science 173, pp. 3-16. DoI: 10.1016/j.entcs.2007.02.024.
Tanaka, Miki (2000). "Abstract Syntax and Variable Binding for Linear Binders". In:
Proceedings of the 25th International Symposium on Mathematical Foundations of Computer Science (MFCS 2000). Ed. by Mogens Nielsen and Branislav Rovan. Vol. 1893.
Lecture Notes in Computer Science (LNCS). Springer, pp. 670-679. Dol:
10.1007/3-540-44612-5_62.

[^0]: ${ }^{1}$ Ahrens (2016), Ahrens, A. Hirschowitz, et al. (2021), Ahrens and Zsido (2011),
 A. Hirschowitz, T. Hirschowitz, and Lafont (2020), and A. Hirschowitz and Maggesi (2012)

[^1]: ${ }^{2}$ Altenkirch, Chapman, and Uustalu (2010)

[^2]: ${ }^{3}$ Fiore, Plotkin, and Turi (1999)

[^3]: ${ }^{4}$ Fiore (2008), Fiore and Hamana (2013), Fiore and Hur (2010), Fiore and Mahmoud (2010), Power (2007), and Tanaka (2000)

