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Introduction Background Distributive laws Free Combinations Conclusion

Overview

Does the Powerset monad distribute over the Delay monad?
(and what about the Distribution monad?)

For Powerset we will:

 Try the obvious sequential and parallel computation

 See that it fails - Rasmus Møgelberg and Andrea Vezzosi

 Discover why it fails not just because of idempotence!

 Prove that it is impossible ...because of idempotence.

For Distributions we will:

 Prove that it is impossible ...because of idempotence.

 Look at a free combination
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Monads

Why use monads?

Models of Computation: non-determinism, probability, states, ...

What are monads?

Functors with structure: xM, η : 1ÑM, µ : MMÑMy
Algebraic structures (HITs): xΣ,Ey.

Powerset monad for non-determinism:

xP, ηP , µPy

PpX q � tY |Y � X finiteu

ηPpxq � txu

µPpY q �
¤

Y

t1p0q, �p2qu

1 � x � x

x � py � zq � px � yq � z

x � y � y � x

x � x � x
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Monads

Why use monads?
Models of Computation: non-determinism, probability, states, ...

What are monads?
Functors with structure: xM, η : 1ÑM, µ : MMÑMy
Algebraic structures (HITs): xΣ,Ey.

Distribution monad for probability:

xD, ηD, µDy

DpX q � tµ|µ has finite supportu

ηDpxq � δx

µDpY q � sum via weighted average

t�p2q
p |p : r0, 1su

x �1 y � x

x �p x � x

x �p y � y �p1�pq x

px �p yq �q z � x �pq py � q�pq
1�pq

zq
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Delay Monad
For recursion / computation steps

Coinductive version
(iteration)

xL, ηL, µLy

LpX q �X � LpX q
ηLpxq � now x � inl x

step x � inr x

µLpdq � ‘adding steps’

Guarded recursive version
(recursion)

xLκ, ηLκ , µLκy

LκpX q �X� � LκX

ηLκpxq � nowκ x � inl x

stepκ x � inr x

µLκpdq � ‘adding steps’



Introduction Background Distributive laws Free Combinations Conclusion

Delay Monad
For recursion / computation steps

Coinductive version
(iteration)

xL, ηL, µLy

LpX q �X � LpX q
ηLpxq � now x � inl x

step x � inr x

µLpdq � ‘adding steps’

Guarded recursive version
(recursion)

xLκ, ηLκ , µLκy

LκpX q �X� � LκX

ηLκpxq � nowκ x � inl x

stepκ x � inr x

µLκpdq � ‘adding steps’

µLpstep nowpstep step now xqq � step step step now x



Introduction Background Distributive laws Free Combinations Conclusion

Delay Monad
For recursion / computation steps

Coinductive version
(iteration)

xL, ηL, µLy

LpX q �X � LpX q
ηLpxq � now x � inl x

step x � inr x

µLpdq � ‘adding steps’

Guarded recursive version
(recursion)

xLκ, ηLκ , µLκy

LκpX q �X� � LκX

ηLκpxq � nowκ x � inl x

stepκ x � inr x

µLκpdq � ‘adding steps’



Introduction Background Distributive laws Free Combinations Conclusion

Delay Monad
For recursion / computation steps

Coinductive version
(iteration)

xL, ηL, µLy

LpX q �X � LpX q
ηLpxq � now x � inl x

step x � inr x

µLpdq � ‘adding steps’

Guarded recursive version
(recursion)

xLκ, ηLκ , µLκy

LκpX q �X� � LκX

ηLκpxq � nowκ x � inl x

stepκ x � inr x

µLκpdq � ‘adding steps’



Introduction Background Distributive laws Free Combinations Conclusion

Delay Monad
For recursion / computation steps

Coinductive version
(iteration)

xL, ηL, µLy

LpX q �X � LpX q
ηLpxq � now x � inl x

step x � inr x

µLpdq � ‘adding steps’

Guarded recursive version
(recursion)

xLκ, ηLκ , µLκy

LκpX q �X� � LκX

ηLκpxq � nowκ x � inl x

stepκ x � inr x

µLκpdq � ‘adding steps’

µLκpstepκ dq � stepκpλpα : κq.µLκpdrαsqq



Introduction Background Distributive laws Free Combinations Conclusion

Delay Monad
For recursion / computation steps

Coinductive version
(iteration)

xL, ηL, µLy

LpX q �X � LpX q
ηLpxq � now x � inl x

step x � inr x

µLpdq � ‘adding steps’

Guarded recursive version
(recursion)

xLκ, ηLκ , µLκy

LκpX q �X� � LκX

ηLκpxq � nowκ x � inl x

stepκ x � inr x

µLκpdq � ‘adding steps’



Introduction Background Distributive laws Free Combinations Conclusion

Delay Monad
For recursion / computation steps

Coinductive version
(iteration)

xL, ηL, µLy

LpX q �X � LpX q
ηLpxq � now x � inl x

step x � inr x

µLpdq � ‘adding steps’

Guarded recursive version
(recursion)

xLκ, ηLκ , µLκy

LκpX q �X� � LκX

ηLκpxq � nowκ x � inl x

stepκ x � inr x

µLκpdq � ‘adding steps’
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Combining Monads

Free combination

No interaction between monads.

Composition LP

Interaction between monads via
distributive law λ : PLÑ LP.

L

PL LP

P

PL LP

ηPL LηP

λ

PηL ηLP

λ

PPL PLP LPP

PL LP

PLL LPL LLP

PL LP

Pλ λP

µPL LµP

λ

λL Lλ

PµL µLP

λ
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Sequential and Parallel Computation
As candidates for λ : PLÑ LP

Set of delayed computations:

Delayed set of computations

, sequential:

Total time: sum of computation times

Delayed set of computations, parallel:

Total time: max of computation times
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As candidates for λ : PLÑ LP
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Sequential and Parallel Computation
As candidates for λ : PLÑ LP

Set of delayed computations:

{?,5,?,?,?}

Delayed set of computations, sequential:

{2,5, ,?,?}

Total time: sum of computation times

Delayed set of computations, parallel:

{?,?,?,?,?}

Total time: max of computation times
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As candidates for λ : PLÑ LP

Set of delayed computations:
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{2,5,3, ,?}
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Sequential and Parallel Computation
As candidates for λ : PLÑ LP

Set of delayed computations:

{?,5,?,?,?}

Delayed set of computations, sequential:

{2,5,3,8, }

Total time: sum of computation times

Delayed set of computations, parallel:

{?,?,?,?,?}

Total time: max of computation times
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Sequential Computation

More precise:

λtnow x , now yu � nowtx , yu

λtstep d , d 1u � steppλtd , d 1uq

so:

tstep step now x , now y , step now zu ÞÑ step step step nowtx , y , zu

Not a distributive law!
Why? Idempotence:

tstep now xu ÞÑ step nowtxu

tstep now x , step now xu ÞÑ step step nowtx , xu � step step nowtxu
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Sequential Computation

So what went wrong?
Imbalance of variables:

x � x � x

x � x � x � x � x x � px � yq � x � y

Theorem

Sequential computation is a distributive law for MLÑ LM for M
presented by balanced equations.
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Parallel Computation

More precise:

λtnow x , now yu � nowtx , yu

λtstep d , now yu � steppλtd , now yuq

λtstep d , step d 1u � steppλtd , d 1uq

so:

tstep step now x , now y , step now zu ÞÑ step step nowtx , y , zu

Not a distributive law!

Why? NOT idempotence!
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PµL µLP

λ
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Lλ
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Parallel Computation

So what went wrong?
Nothing specific to Powerset!
Only ingredient: “structure with two elements”.

Theorem

Parallel computation is never a distributive law for MLÑ LM if M is
presented by a theory with a binary term.
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No Hope for Powerset

What can we do?

λtnow x , now yu � nowtx , yu

λtstep d , now yu � steppλtd , now yuq

λtstep d , step d 1u � steppλtd , d 1uq

PL2 LP2 tstep now x , step now yu ?

PL1 LP1 tstep now xu step nowtxu

λ

λ

λ

λ

PLf LPf PLf LPf

t?u � H t?u � txu t?u � tyu t?u � tx , yu
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No Hope for Distribution

What can we do?

λpnow x �p now yq � nowpx �p yq

λpstep d �p now yq � steppλpd �p now yqq

λpstep d �p step d
1q � steppλpd �p d

1qq

DLp2q LDp2q pstep now xq �p pstep now yq step now?

DLp1q LDp1q δpstep now xq step now δx

λ

λ

λ

λ

DLf LDf DLf LDf

? � δx ? � δy ? � x �q y
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No Hope in General?

Theorem

There is no causal distributive law MLÑ LM, if M is presented by a
theory with an idempotent and commutative term.

MLκ Ñ LκMñMLÑ LM

MLÑ LM÷MLκ Ñ LκM

Example in the paper.1

1Rasmus Møgelberg and Maaike Zwart - What Monads Can and Cannot Do with a
Bit of Extra Time. Doi: 10.4230/LIPIcs.CSL.2024.39
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A bit of Hope!

Main problem so far:
step step � step

But what if:
step step � step

Theorem

Parallel computation defines a distributive law MLÑ LM up to weak
bisimilarity, if M is presented by a theory with no drop equations.

✓ x � x � x � x � y � x
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Free Powerset + Delay
May convergence2

Pκ
� pAq � PpA� �κ Pκ

� pAqq

Free monad of join semilattices + delay algebra

1 � x � x

x � py � zq � px � yq � z

x � y � y � x

x � x � x

nowpxq � tinl xu

steppxq � tinr xu

2Rasmus Møgelberg and Andrea Vezzosi - Two guarded recursive powerdomains
for applicative simulation. Doi: 10.4204/EPTCS.351.13
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Free Distribution + Delay3

Dκ
� pAq � DpA� �κ Dκ

� pAqq

Free monad of convex algebras + delay algebra

x �1 y � x

x �p x � x

x �p y � y �p1�pq x

px �p yq �q z � x �pq py � q�pq
1�pq

zq

nowpxq � δinl x

steppxq � δinr x

3Philipp Stassen, Rasmus Møgelberg, Maaike Zwart, Alejandro Aguirre and Lars
Birkedal - Modelling Probabilistic FPC in Guarded Type Theory. Under review.
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Free M + Delay

Mκ
� pAq �MpA� �κ Mκ

� pAqq

Free monad of M-algebras + delay algebra

x �1 y � x

x �p x � x

x �p y � y �p1�pq x

px �p yq �q z � x �pq py � q�pq
1�pq

zq

nowpxq � tinl xu

steppxq � tinr xu
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Conclusion

We saw:

 Sequential computation gives λ : MLÑ LM for balanced M.

 Parallel computation gives λ : MLÑ LM for non-drop M, but
only up to weak bisimilarity.

 Distributive law PLÑ LP impossible.

 Distributive law DLÑ LD impossible.

 Causal distributive law MLÑ LM impossible for idempotent and
commutative M.

More in the papers!

 Combinations of Delay with Exceptions, Reader, State, Selection ...

 How to reason about probabilistic programs with Dκ
� .
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