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Motivation

Goal: Prove properties of the syntax of type theory from its universal

property.

Syntax S = initial model of type theory.

G

S

J−K

Problem 1: Unfolded definition of G is difficult / not modular.

⇝ Construct G _ S by categorical gluing.

Problem 2: The section J−K is not always enough.

e.g. For normalization: need to combine with interpretation of variables.
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Normalization

Running example: Normalization for small dependent type theory T .

Syntax S = Initial object of ModT .

Canonicity proof:

universal property of S + sconing.

Normalization proof:

universal property of S + gluing + interpretation of variables.

Key idea: use universal property of other model SF + sconing over SF .
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Presheaf categories

Functor from renamings into syntax:

F : RenS → S

• The syntax/initial model S is an external object.

• Types and terms are stable under substitutions.

⇝ Live in Psh(S).

• Normal forms are stable under renamings.

⇝ Live in Psh(RenS).

(Motives + Methods) for normalization also live in Psh(RenS).

Normalization function should also be in Psh(RenS).
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Key idea

F : RenS → S

Define: Internal model SF in Psh(RenS) such that:

(Closed terms of SF ) ≈ (Open terms of S over the image of F )

Normalization for closed terms of SF :

Every closed term (1 ⊢ a : A) ∈ SF admits a unique normal form.

Normalization proof: universal property of SF + sconing over SF .
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Universal property of SF /

Relative Induction Principle

1. Universal property of SF / Relative Induction Principle

2. (Internal) Sconing

3. Construction of SF
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(First-order) Models

Models of T = CwFs + type-theoretic structures (Π-types, etc.).

Models of a first-order essentially algebraic theory T fo.

(Classified by a finitely complete category.)

Syntax S = Initial object of ModT .
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Renamings

Definition

A renaming algebra over S is a pair (R,F ), where F : R → S is a

CwF morphism that is bijective on types.

Definition

The category of renamings RenS is the initial renaming algebra over S.

Internally to Psh(RenS):

Var : (1 ⊢ A type) ∈ SF → Set, (Terms of the CwF RenS)

varA : (x : Var(A)) → (1 ⊢ var(x) : A) ∈ SF . (Action of F on terms)

varA(x) is a closed term of SF !
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Relative induction principle

Relative Induction Principle = Induction principle for SF .

Theorem

If M• is a global displayed model over SF and we additionally have

var• : ∀(A• : M•.Ty•(1•,A)) (x : Var(A)) → M•.Tm•(1•,A•, varA(x)),

(Interpretation of variables in M•)

then M• admits a section J−K : SF → M• such that

Jvar(x)K = var•(JAK, x).

Combines universal properties of S and RenS .
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(Internal) Sconing

1. Universal property of SF / Relative Induction Principle

2. (Internal) Sconing

3. Construction of SF
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Higher-order models

A higher-order model of T is a family with additional structure:

Ty : Set,

Tm : Ty → Set,

Π : (A : Ty) (B : Tm(A) → Ty) → Ty,

app : Tm(Π(A,B)) ∼= ((a : Tm(A)) → Tm(B(a))).

Higher-order models support Higher-Order Abstract Syntax.

Higher-order models are models of a higher-order theory T ho.

(Classified by a locally cartesian closed category.)
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Higher-order and first-order models

Higher-order models:

• Defining higher-order models is “easy” (few components).

• There is no (suitable) category of higher-order models.

First-order models:

• Defining first-order models directly is “hard”

(naturality conditions, . . . )

• The category ModT of first-order models is well-behaved.

It is complete, cocomplete, etc.

Construct first-order models from higher-order models.
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Standard model

First-order model Set.

• Underlying category is Set.

• Types are functions Γ → Set.

• Terms are dependent functions (γ : Γ) → A(γ).

• Context extensions are dependent sums:

Γ.A = (γ : Γ)× A(γ).

• Π(A,B) = λγ 7→ ((a : A(γ)) → B(γ, a)).
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Set-contextualization

First-order model SetM for a higher-order model M.

• Underlying category is Set.

• Types are functions Γ → M.Ty.

• Terms are dependent functions (γ : Γ) → M.Tm(A(γ)).

• Context extensions are dependent sums:

Γ.A = (γ : Γ)×M.Tm(A(γ)).

• Π(A,B) = λγ 7→ M.Π(A(γ), λa 7→ B(γ, a)).

Contextualization adds contexts to a higher-order model.
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Displayed higher-order model

Displayed higher-order model over first-order model M.

(Motives and methods over closed terms of M.)

Ty• : M.Ty(1) → Set,

Tm• : Ty•(A) → M.Tm(1,A) → Set,

Π• : (A• : Ty•(A))

(B• : ∀(a : M.Tm(1,A)) (a• : Tm•(A•, a)) → Ty•(B[a]))

→ Ty•(M.Π(A,B)),

. . .

Here B : M.Ty(1.A) is dependent over A.
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Scone-contextualization

M• SconeM•

M M

Scone-contextualization

M• is a displayed higher-order model over M.

SconeM• is a displayed first-order model over M.

Underlying category of SconeM• is the scone of M.

Set-contextualization = Scone-contextualization over 1ModT .
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Canonicity proof structure

1. Define: Displayed higher-order model S• over S.

S•.Ty•(A) = S.Tm(1,A) → Set0,

S•.Tm•(A•, a) = A•(a),

. . .

2. Construct: Scone-contextualization SconeS• _ S.

3. Obtain: Section J−K : S → SconeS• .

If (1 ⊢ b : Bool) ∈ S, then JbK : (b = true) + (b = false).
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Normalization proof structure

1. Define: Displayed higher-order model S• over SF .

+ Interpretation var• of variables.

S•.Ty•(A) = {logical predicate over A+ unquote + quote}
S•.Tm•(A•, a) = A•

p(a)

. . .

var•(A•, x) = A•
u(var

ne(x)).

2. Construct: Scone-contextualization SconeS• _ S.

3. Obtain: Section J−K : SF → SconeS• s.t. JvarA(x)K = var•(JAK, x).

If (1 ⊢ a : A) ∈ SF , then JAKq(JaK) : HasNf(a).

J−K has computation rules.

⇝ Uniqueness of normal forms by induction on normal forms.
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Construction of SF

1. Universal property of SF / Relative Induction Principle

2. (Internal) Sconing

3. Construction of SF

18



Models of first-order theories in presheaf categories

The following are equivalent:

• Models of T internally to Psh(C).

• Functors Cop → ModT .

Interface between internal and external objects.

Holds for any first-order essentially algebraic theory.
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Construction 1 of SF

S S TeleS F ∗(TeleS)
internalization

telescopic
contextualization restriction

• S is an external FOM.

• S is an internal HOM in Psh(S).

• TeleS is an internal FOM in Psh(S).

• F ∗(TeleS) is an internal FOM in Psh(RenS).

SF = F ∗(TeleS).
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Construction 2 of SF

SF : RenopS → ModT ,

SF (Γ) = (S � F (Γ))

(Contextual slice of S over F (Γ))
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Conclusion

• For any functor F : C → S, internal model SF in Psh(C) s.t.

(Closed terms of SF ) ≈ (Open terms of S over the image of F ).

• Universal property of SF combines universal properties of S and C.

• Properties of closed terms of SF can be proven by sconing.

• Section J−K : SF → SconeS• has computation rules.

https://arxiv.org/abs/2302.05190
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(empty)
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Universal property of SF

SF : RenopS → ModT ,

SF (Γ) = (S � F (Γ)).

For every Γ ∈ RenS , SF (Γ) ∼= S[γ : Γ].

Universal property of SF glues universal properties of all SF (Γ).
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Category of sections

SectopT [M•] SectopT

RenS DispModopT

ModopT .

⌟
π0

J−K0

SF

M•

To construct J−K : RenS → SectopT :

Equip SectopT [M•] with renaming algebra structure.

25



About Synthetic Tait Computability

RenS RenS [F ]

SF

F̃

RenS [F ] = lax colimit of F : RenS → S.

Psh(RenS [F ]) = Artin gluing of F ∗ : Psh(S) → Psh(RenS).

Work with SF̃ instead of SF .
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Example of computation with section over SF

JΠ(A,B)Kq(Jlam(b)K)

= Π•
q(JAK, λa• 7→ JB(a)K[a 7→ a•])(λa• 7→ Jb(a)K[a 7→ a•])

(by the computation rules for JΠ(−)K and JlamK)

= lamnf(λa 7→ let a• = JAKu(var
ne(a)) in (JB(a)K[a 7→ a•])q(Jb(a)K[a 7→ a•])

(by definition of Π•
q)

= lamnf(λa 7→ (JB(a)K[a 7→ Jvar(a)K])q(Jb(a)K[a 7→ Jvar(a)K]))
(by the computation rule for Jvar(a)K)

= lamnf(λa 7→ JB[var(a)]Kq(Jb[var(a)]K)) (by the naturality of J−K)

= lamnf(bnf). (by the induction hypothesis for bnf)
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