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Goal: Prove properties of the syntax of type theory from its universal
property.
Syntax S = initial model of type theory.
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Goal: Prove properties of the syntax of type theory from its universal
property.
Syntax S = initial model of type theory.
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Problem 1: Unfolded definition of G is difficult / not modular.
~+ Construct G — S by categorical gluing.

Problem 2: The section [—] is not always enough.
e.g. For normalization: need to combine with interpretation of variables.
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Normalization

Running example: Normalization for small dependent type theory T .
Syntax & = Initial object of Mod7.

Canonicity proof:
universal property of S + sconing.

Normalization proof:
universal property of & + gluing + interpretation of variables.

Key idea: use universal property of other model Sg + sconing over Sk.



Presheaf categories

Functor from renamings into syntax:

F:Rens — S

e The syntax/initial model S is an external object.
e Types and terms are stable under substitutions.
~> Live in Psh(S).
e Normal forms are stable under renamings.
~> Live in Psh(Reng).

(Motives + Methods) for normalization also live in Psh(Reng).

Normalization function should also be in Psh(Reng).



F:Rens — S
Define: Internal model Sr in Psh(Reng) such that:

(Closed terms of Sg) &~ (Open terms of S over the image of F)

Normalization for closed terms of Sg:
Every closed term (1 F a: A) € Sf admits a unique normal form.

Normalization proof: universal property of Sf + sconing over Sr.



Universal property of S¢ /
Relative Induction Principle

1. Universal property of Sg / Relative Induction Principle



Models of 7 = CwFs + type-theoretic structures (-types, etc.).

Models of a first-order essentially algebraic theory 7.
(Classified by a finitely complete category.)

Syntax & = Initial object of Mod7.



Renamings

A renaming algebra over S is a pair (R, F), where F: R — S is a
CwF morphism that is bijective on types.

The category of renamings Reng is the initial renaming algebra over S.

Internally to Psh(Reng):

Var: (1 A type) € S — Set, (Terms of the CwF Reng)
vara : (x : Var(A)) — (1 F var(x) : A) € Sr. (Action of F on terms)

vara(x) is a closed term of S¢!



Relative induction principle

Relative Induction Principle = Induction principle for S¢.

If M* is a global displayed model over Sg and we additionally have

var® 1 V(A® : M*.Ty*(1°%, A)) (x : Var(A)) — M*.Tm*(1°, A®,vara(x)),
(Interpretation of variables in M?®)

then M® admits a section [—] : Sp — M?® such that

[var(x)] = var®([A], x).

Combines universal properties of S and Reng.



(Internal) Sconing

2. (Internal) Sconing



Higher-order models

A higher-order model of 7 is a family with additional structure:
Ty : Set,
Tm : Ty — Set,
M:(A:Ty) (B: Tm(A) = Ty) = Ty,
app: Tm(MN(A, B)) 2 ((a: Tm(A)) — Tm(B(a))).

Higher-order models support Higher-Order Abstract Syntax.

Higher-order models are models of a higher-order theory 7"°.
(Classified by a locally cartesian closed category.)

10



Higher-order and first-order models

Higher-order models:

e Defining higher-order models is “easy” (few components).

e There is no (suitable) category of higher-order models.
First-order models:

e Defining first-order models directly is “hard”
(naturality conditions, .. .)

e The category Mod of first-order models is well-behaved.
It is complete, cocomplete, etc.
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Higher-order and first-order models

Higher-order models:

e Defining higher-order models is “easy” (few components).

e There is no (suitable) category of higher-order models.
First-order models:

e Defining first-order models directly is “hard”
(naturality conditions, .. .)

e The category Mod of first-order models is well-behaved.
It is complete, cocomplete, etc.

Construct first-order models from higher-order models.
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Standard model

First-order model Set.

e Underlying category is Set.
e Types are functions [ — Set.
e Terms are dependent functions (v : ) — A(y).

e Context extensions are dependent sums:
FA=(v:T)xA(y).
M(A, B) = Ay = ((a: A(y)) = B(7,3)).
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Set-contextualization

First-order model Sety; for a higher-order model M.

e Underlying category is Set.
e Types are functions [ — M. Ty.
e Terms are dependent functions (v : ) — M.Tm(A(v)).

e Context extensions are dependent sums:
FA=(v:T) x M.Tm(A(¥)).

M(A, B) = Ay — M.IN(A(7), A\a — B(~, a)).

Contextualization adds contexts to a higher-order model.
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Displayed higher-order model

Displayed higher-order model over first-order model M.

(Motives and methods over closed terms of M.)

Ty® : M.Ty(1) — Set,

Tm® : Ty*(A) = M. Tm(1, A) — Set,

ne :(A°:Ty*(A))
(B®:V(a: M.Tm(1,A)) (a°: Tm*(A®, a)) — Ty*(Bl[a]))
— Ty*(M.N(A, B)),

Here B : M.Ty(1.A) is dependent over A.
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Scone-contextualization

M® _Scone-contextualization
F

Sconeye
l J,
M M

M?* is a displayed higher-order model over M.
Sconey. is a displayed first-order model over M.
Underlying category of Sconey. is the scone of M.

Set-contextualization = Scone-contextualization over 1mod, .
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Canonicity proof structure

1. Define: Displayed higher-order model S® over S.

S*.Ty*(A) = 8.Tm(1, A) — Seto,
S*.Tm*(A®, a) = A®(a),

2. Construct: Scone-contextualization Sconege — S.

3. Obtain: Section [—] : S — Sconege..

If (1F b:Bool) €S, then [b] : (b = true) + (b = false).
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Normalization proof structure

1. Define: Displayed higher-order model S°® over Sg.
+ Interpretation var® of variables.

S®.Ty®*(A) = {logical predicate over A + unquote + quote}
S*.Tm*(A%, a) = A3(a)
var®(A®, x) = A? (var™(x)).

2. Construct: Scone-contextualization Sconege — S.

3. Obtain: Section [—] : S — Sconeg. s.t. [vara(x)] = var®([A], x).
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Normalization proof structure

1. Define: Displayed higher-order model S°® over Sg.
+ Interpretation var® of variables.

S®.Ty®*(A) = {logical predicate over A + unquote + quote}
S*.Tm*(A%, a) = A3(a)
var®(A®, x) = A? (var™(x)).

2. Construct: Scone-contextualization Sconege — S.

3. Obtain: Section [—] : S — Sconeg. s.t. [vara(x)] = var®([A], x).

If (1 a:A) € Sk, then [A] ([a]) : HasNf(a).

[—] has computation rules.
~» Uniqueness of normal forms by induction on normal forms.
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Construction of Sr

3. Construction of S¢
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Models of first-order theories in presheaf categories

The following are equivalent:

e Models of 7T internally to Psh(C).

e Functors C°? — Mod7.
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Models of first-order theories in presheaf categories

The following are equivalent:

e Models of 7T internally to Psh(C).

e Functors C°? — Mod7.
Interface between internal and external objects.

Holds for any first-order essentially algebraic theory.
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Construction 1 of Sf

telescopic

ISk internalization S }contextualization -I-eleS restriction F*(Te|E§)

S is an external FOM.

e Sis an internal HOM in Psh(S).

Teleg is an internal FOM in Psh(S).
F*(Teleg) is an internal FOM in Psh(Reng).

Sr = F*(Teleg).
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Construction 2 of Sr

Sr : Ren?’ — Modr,
Se(M) = (S / F(T))

(Contextual slice of S over F(I'))
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Conclusion

For any functor F : C — S, internal model S¢ in Psh(C) s.t.

(Closed terms of SF) =~ (Open terms of S over the image of F).

Universal property of S combines universal properties of S and C.

e Properties of closed terms of Sg can be proven by sconing.

Section [—] : S — Sconeg. has computation rules.

https://arxiv.org/abs/2302.05190
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https://arxiv.org/abs/2302.05190

(empty)
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Universal property of S¢

Sr : Ren’ — Modr,

Se(M) = (8 / F(I)).

For every ' € Rens, SF(I") = S[y : T].

Universal property of Sk glues universal properties of all Sg(IN).
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Category of sections

Sect?’[M°] b, Sect?

= |

Rens —* DispMod?®

|

s Mod?P.

To construct [—] : Rens — Sect?”:

Equip Sect?’[M°] with renaming algebra structure.
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About Synthetic Tait Computability

Rens —— Reng][F]

St

Reng[F] = lax colimit of F : Reng — S.
Psh(Reng[F]) = Artin gluing of F*: Psh(S) — Psh(Reny).
Work with Sg instead of Sf.
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Example of computation with section over S¢

[M(A, B)]4([lam(b)])
= MG([A], Aa® = [B(a)][a — a*])(Aa® = [b(a)][a — a°])
(by the computation rules for [[1(—)] and [lam])
= lam"(\a — let a® = [A],(var"(a)) in ([B(a)][a— a°]),([b(a)][a — a°])
(by definition of I7)
= lam™(Aa = ([B(2)][a ~ [var(a)]]),([b(2)][a ~ [var(a)]]))
(by the computation rule for [var(a)])
= lam"(\a — [Blvar(a)]],([blvar(a)]]))  (by the naturality of [—])
= lam" (™). (by the induction hypothesis for b™)
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