Automating reasoning in cubical type theory

EPN WG 6 meeting Vienna, 25 April 2023

Maximilian Doré maximilian.dore@cs.ox.ac.uk

Motivation

- Cubical Agda introduces new kind of proof obligation: given a boundary in a Kan cubical set, construct a cell with that boundary.
- Explore interval substitutions and Kan compositions as principles of logic
 - \rightarrow Automate higher equational reasoning

Higher inductive types and interval substitutions

In Cubical Agda, higher inductive types generate cubical sets.

data Sphere where

• base : Sphere

• surf : Path (Path Sphere base base) refl refl

Cells can be contorted with interval substitutions: Abstracting over interval variables drags out a cube, application of formulas to cells prescribe the boundary of the produced cube.

$$\begin{array}{l} \lambda \,\,i\,\,j\,\,k \to \mathsf{surf}\,\,(i \lor k)\,\,((i \land j) \lor k)) \\ : \,\mathsf{PathP}(\lambda i \to \mathsf{PathP}(\lambda j \to \mathsf{Path}\;\mathsf{Sphere}\;\\ (\mathsf{surf}\,\,i\,\,(i \land j))\;\mathsf{base}) \\ (\lambda k \to \mathsf{surf}\,\,(i \lor k)\,\,k)\,\,(\lambda k \to \mathsf{surf}\,\,(i \lor k)\,\,(i \lor k))) \\ (\lambda j\,\,k \to \mathsf{surf}\,\,k\,\,k)\,\,(\lambda j\,\,k \to \mathsf{base}) \end{array}$$

Higher-dimensional faces determine the poset map the most.

Cubical sets

 $\Box_{\wedge\vee}$ is the full subcategory of the category of posets and monotone maps with objects \mathbf{I}^n for $n \ge 0$, where $\mathbf{I} = \{0 < 1\}$. A <u>cubical set</u> is an object of $\mathbf{Set}^{\Box_{\wedge\vee}^{op}}$.

All morphisms in $\Box_{\wedge\vee}$ are of the form $\mathbf{I}^m \to \mathbf{I}^n$, e.g.:

$$s^{i}: \mathbf{I}^{n} \to \mathbf{I}^{n-1}, (e_{1} \dots e_{n}) \mapsto (e_{1} \dots e_{i-1} e_{i+1} \dots e_{n}) \text{ for } 1 \leq i \leq n$$
$$d^{(i,e)}: \mathbf{I}^{n-1} \to \mathbf{I}^{n}, (e_{1} \dots e_{n-1}) \mapsto (e_{1} \dots e_{i-1} e_{i+1} \dots e_{n-1})$$
$$\text{ for } 1 \leq i \leq n, e \in \{0,1\}$$

Given an *n*-cell p of a cubical set X and a poset map $\sigma: \mathbf{I}^m \to \mathbf{I}^n$, call $p\langle \sigma \rangle := X(\sigma)(p)$ an *m*-contortion of p.

Its boundary is $\partial(p) := [p\langle d^{(1,0)} \rangle, p\langle d^{(1,1)} \rangle, \dots p\langle d^{(n,0)} \rangle, p\langle d^{(n,1)} \rangle]$

Cubical sets

 $\Box_{\wedge\vee}$ is the full subcategory of the category of posets and monotone maps with objects \mathbf{I}^n for $n \ge 0$, where $\mathbf{I} = \{0 < 1\}$. A <u>cubical set</u> is an object of $\mathbf{Set}^{\Box_{\wedge\vee}^{op}}$.

All morphisms in $\Box_{\wedge\vee}$ are of the form $\mathbf{I}^m \to \mathbf{I}^n$, e.g.:

$$s^{i}: \mathbf{I}^{n} \to \mathbf{I}^{n-1}, (e_{1} \dots e_{n}) \mapsto (e_{1} \dots e_{i-1} e_{i+1} \dots e_{n}) \text{ for } 1 \leq i \leq n$$
$$d^{(i,e)}: \mathbf{I}^{n-1} \to \mathbf{I}^{n}, (e_{1} \dots e_{n-1}) \mapsto (e_{1} \dots e_{i-1} e_{i+1} \dots e_{n-1})$$
$$\text{ for } 1 \leq i \leq n, e \in \{0,1\}$$

Given an *n*-cell p of a cubical set X and a poset map $\sigma: \mathbf{I}^m \to \mathbf{I}^n$, call $p\langle \sigma \rangle := X(\sigma)(p)$ an *m*-contortion of p.

Its boundary is $\partial(p) := [p\langle d^{(1,0)} \rangle, p\langle d^{(1,1)} \rangle, \dots p\langle d^{(n,0)} \rangle, p\langle d^{(n,1)} \rangle]$

<u>Problem CubicalCell</u>: given a boundary T and an *n*-cell p, find a poset map $\sigma : \mathbf{I}^m \to \mathbf{I}^n$ such that $\partial(p\langle \sigma \rangle) = T$.

Representing the search space

Represent a collection of poset maps as follows:

A potential poset map (ppm) is a map $\Sigma : \mathbf{I}^m \to \mathcal{P}(\mathbf{I}^n)$ such that $\forall x \leq y$:

•
$$\forall u \in \Sigma(y) : \exists v \in \Sigma(x) : v \le u.$$

•
$$\forall v \in \Sigma(x) : \exists u \in \Sigma(y) : v \le u.$$

Given $x \in \mathbf{I}^m$, any $y \in \Sigma(x)$ induces at least one $\sigma : \mathbf{I}^m \to \mathbf{I}^n$.

Total ppm $\Sigma(x) \mapsto \mathbf{I}^n$ grows exponentially in *m* and *n*.

Representing the search space

Represent a collection of poset maps as follows:

A potential poset map (ppm) is a map $\Sigma : \mathbf{I}^m \to \mathcal{P}(\mathbf{I}^n)$ such that $\forall x \leq y$:

•
$$\forall u \in \Sigma(y) : \exists v \in \Sigma(x) : v \le u.$$

•
$$\forall v \in \Sigma(x) : \exists u \in \Sigma(y) : v \le u.$$

Given $x \in \mathbf{I}^m$, any $y \in \Sigma(x)$ induces at least one $\sigma : \mathbf{I}^m \to \mathbf{I}^n$. Total ppm $\Sigma(x) \mapsto \mathbf{I}^n$ grows exponentially in m and n.

Searching for contortions

Given an n-cell p and an m-dimensional boundary T.

- start with total ppm $\Sigma(x) = \mathbf{I}^n$ for all x.
- for each $q\langle \tau \rangle = T_{i,e}$ with $\dim(q)$ decreasing:

• if
$$q = p$$
, then $\Sigma(x) = \{\tau(x)\}$ for all $x \in \mathbf{I}^n$.

• $o/w \Sigma(x) = \{y \mid \exists \sigma' \in \Sigma \text{ with } \sigma'(x) = y \text{ s.t. } p\langle \sigma' \rangle = T_{(i=e)} \}$

• return $\sigma \in \Sigma$ such that $\partial(p\langle \sigma \rangle) = T$.

$$\begin{split} \mathsf{PathP}(\lambda i \to \mathsf{PathP}(\lambda j \to \mathsf{Path} \; (\mathsf{surf} \; (i \wedge j) \; (i \vee j)) \; \mathsf{base}) \\ & (\lambda k \to \mathsf{base})(\lambda k \to \mathsf{base})(\lambda j k \to \mathsf{base})(\lambda j k \to \mathsf{base}) \end{split}$$

 $\begin{array}{l} \textbf{Goal: } [\mathsf{surf} \langle_{\substack{10 \mapsto \ 01 \\ 10 \mapsto \ 01}}^{(1) \mapsto \ 01} \rangle, \mathsf{base} \langle s^2 \rangle, \mathsf$

$$\begin{split} \mathsf{PathP}(\lambda i \to \mathsf{PathP}(\lambda j \to \mathsf{Path} \; (\mathsf{surf} \; (i \land j) \; (i \lor j)) \; \mathsf{base}) \\ & (\lambda k \to \mathsf{base})(\lambda k \to \mathsf{base}))(\lambda j k \to \mathsf{base})(\lambda j k \to \mathsf{base}) \end{split}$$

 $\textbf{Goal: } [\mathsf{surf}_{\substack{(0 \mapsto 00 \\ 10 \mapsto 01 \\ 11 \mapsto 11}}^{00 \mapsto 00} \rangle, \mathsf{base}\langle s^2 \rangle]$

$$\begin{split} \mathsf{PathP}(\lambda i \to \mathsf{PathP}(\lambda j \to \mathsf{Path} \; (\mathsf{surf} \; (i \land j) \; (i \lor j)) \; \mathsf{base}) \\ & (\lambda k \to \mathsf{base})(\lambda k \to \mathsf{base}))(\lambda j k \to \mathsf{base})(\lambda j k \to \mathsf{base}) \end{split}$$

 $\begin{array}{l} \textbf{Goal:} \; [\mathsf{surf}_{\langle \substack{01\mapsto \ 01\\ 10\mapsto \ 01}\rangle}^{\langle 00\mapsto \ 00}, \mathsf{base}\langle s^2\rangle, \mathsf{base}\langle s^2$

$$\begin{split} \mathsf{PathP}(\lambda i \to \mathsf{PathP}(\lambda j \to \mathsf{Path} \; (\mathsf{surf} \; (i \land j) \; (i \lor j)) \; \mathsf{base}) \\ & (\lambda k \to \mathsf{base})(\lambda k \to \mathsf{base}))(\lambda j k \to \mathsf{base})(\lambda j k \to \mathsf{base}) \end{split}$$

 $\textbf{Goal: } [\mathsf{surf}_{\substack{\langle 00 \mapsto 00 \\ 10 \mapsto 01 \\ 11 \mapsto 11 \rangle}}^{00 \mapsto 00} \rangle, \mathsf{base}\langle s^2 \rangle]$

$$\begin{split} \mathsf{PathP}(\lambda i \to \mathsf{PathP}(\lambda j \to \mathsf{Path} \; (\mathsf{surf} \; (i \land j) \; (i \lor j)) \; \mathsf{base}) \\ & (\lambda k \to \mathsf{base})(\lambda k \to \mathsf{base}))(\lambda j k \to \mathsf{base})(\lambda j k \to \mathsf{base}) \end{split}$$

 $\begin{array}{l} \textbf{Goal:} \; [\mathsf{surf}_{\langle \substack{00 \mapsto \ 00 \\ 10 \mapsto \ 01 \rangle}, \, \mathsf{base}\langle s^2 \rangle, \, \mathsf{bas$

Complexity of contortion search

When checking whether we can contort an *n*-cell into an *m*-dimensional boundary, we have to evaluate $\mathcal{O}(2mD_{m-1}^n)$ many contortions – bruteforce would require $\mathcal{O}(D_m^n)$.

In many cases we have to check significantly fewer.

Complexity of contortion search

When checking whether we can contort an *n*-cell into an *m*-dimensional boundary, we have to evaluate $\mathcal{O}(2mD_{m-1}^n)$ many contortions – bruteforce would require $\mathcal{O}(D_m^n)$.

In many cases we have to check significantly fewer.

6-dim analogue of goal requires checking < 16.000 poset maps. → solve sphere sphere6Cube Just (Term "p" (fromList [(000000,00),(000001,01),(000001,01),(000010,01),(000100,01),(000110,01),((000110,01),(000111,01),(001000,01),(010001,01),(0010010,01),(001100,01),(001100,01),(001100,01),(001100,01),(001100,01),(001010,01),(001010,01),(001010,01),(001010,01),(001010,01),(00000,01),(100000,01),(100010,01),(100010,01),(100010,01),(100010,01),(100000,01),(100000,01),(100010,01),(100010,01),(100010,01),(100010,01),(100010,01),(100010,01),(100010,01),(100000,01),(100000,01),(100010,01),(100010,01),(100010,01),(100010,01),(100010,01),(100010,01),(10000,01),(10000,01),(100010,01),(100010,01),(100010,01),(100010,01),(100010,01),(100010,01),(10000,01),(10000,01),(10000,01),(10000,01),(110010,01),(110010,01),(110100,01),(110100,01),(110100,01),(110100,01),(110100,01),(110100,01),(110110,01),(110110,01),(110110,01),(110110,01),(110110,01),(110110,01),(1101111,11))))) (1.85 secs, 1,284,512,368 bytes) > (putStrLn . agdaShow . fromJust) (solve sphere sphere6Cube) p (j k k l k m k n) (j v j v k v l v m v n) (1.82 secs, 1,283,966.024 bytes)

Brute force: $D_6^2 = 7.828.354^2 = 61.283.126.349.316$ poset maps.

Kan cubical sets

Crucial reasoning principle in Cubical Agda: hcomp

An (n+1)-dimensional open box is a collection of 2n+1 cells $[t_{1,0}, t_{1,1}, \ldots, t_{n,0}, t_{n,1}]u$ such that

•
$$t_{i,e}\langle d^{(n,\mathbf{0})}\rangle = u\langle d^{(i,e)}\rangle$$
 for all $1 \le i \le n$, $e \in \{\mathbf{0},\mathbf{1}\}$

• $t_{i,e}\langle d^{(j,e')} \rangle = t_{i,e'}\langle d^{(i,e)} \rangle$ for $1 \le i < j \le n$ and $e, e \in \{0, 1\}$.

A Kan cubical set has for any open box U a front side Comp U.

p

Finding open boxes as a constraint satisfaction problem

<u>Problem KanCubicalCell</u>: given a boundary T, find an open cube U with front T.

Finding open boxes as a constraint satisfaction problem

<u>Problem KanCubicalCell</u>: given a boundary T, find an open cube U with front T.

- Variables $X_{\rm B}$ and $X_{i,0}, X_{i,1}$ for $1 \le i \le n$
- Domains

•
$$D_{\mathrm{B}} = \{p\langle \Sigma \rangle \mid p \in \Gamma\}$$

• $D_{i,e} = \{p\langle \Sigma \rangle \mid p \in \Gamma, p\langle \Sigma \rangle \langle d^{(n,1)} \rangle = T_{i,e}\}$

• Constraints

•
$$X_{i,e}\langle d^{(n,\mathbf{0})}\rangle = X_{\mathrm{B}}\langle d^{(i,e)}\rangle$$
 for all $1 \le i \le n$, $e \in \{\mathbf{0},\mathbf{1}\}$

• $X_{i,e} \langle d^{(j,e')} \rangle = X_{j,e'} \langle d^{(i,e)} \rangle$ for $1 \le i < j \le n, e, e \in \{\mathbf{0}, \mathbf{1}\}.$

Simple Kan composition

data Paths where

- * : Paths
- $p,q:\star=\star$

Goal: [p,q,p,q]

$$\begin{split} D_{1,0} &= \{ p_{10 \mapsto 0}^{00 \mapsto 0} \\ p_{10 \mapsto 0}^{01 \mapsto 0,1} \rangle \} \\ & \xrightarrow{11 \mapsto 1} \\ D_{1,1} &= \{ q_{10 \mapsto 0}^{01 \mapsto 0,1} \rangle \} \\ & \xrightarrow{10 \mapsto 0} \\ D_{1,0} &= \{ p_{10 \mapsto 0,1}^{01 \mapsto 0,1} \rangle \} \\ & \xrightarrow{10 \mapsto 1} \\ D_{1,1} &= \{ q_{10 \mapsto 0,1}^{01 \mapsto 0,1} \rangle \} \\ & \xrightarrow{10 \mapsto 1} \\ D_{B} &= \{ \star_{10 \mapsto 0}^{00 \mapsto 0,1}, p_{10 \mapsto 0,1}^{00 \mapsto 0,1} \rangle, p_{10 \mapsto 0,1}^{00 \mapsto 0,1} \rangle \} \\ & \xrightarrow{11 \mapsto 1} \\ & \xrightarrow{11 \mapsto 1} \\ D_{B} &= \{ \star_{10 \mapsto 0}^{00 \mapsto 0,1}, p_{10 \mapsto 0,1}^{00 \mapsto 0,1} \rangle, p_{11 \mapsto 0,1}^{00 \mapsto 0,1} \rangle \} \end{split}$$

Simple Kan composition

data Paths where

- * : Paths
- $p,q:\star=\star$

Goal: [p,q,p,q]

$$D_{1,0} = \{ p_{\langle 01 \mapsto 0 \atop 10 \mapsto 0}^{\langle 00 \mapsto 0} \\ D_{1,1} = \{ q_{\langle 01 \mapsto 0 \atop 10 \mapsto 0}^{\langle 01 \mapsto 0} \} \\ D_{1,1} = \{ q_{\langle 01 \mapsto 0 \atop 10 \mapsto 0}^{\langle 01 \mapsto 0 \atop 10 \mapsto 0} \} \\ D_{1,0} = \{ p_{\langle 01 \mapsto 1 \atop 10 \mapsto 1}^{\langle 01 \mapsto 0 \atop 10 \mapsto 0} \} \\ D_{1,1} = \{ q_{\langle 01 \mapsto 0 \atop 10 \mapsto 0}^{\langle 01 \mapsto 0 \atop 10 \mapsto 0} \} \\ D_{B} = \{ p_{\langle 01 \mapsto 1 \atop 11 \mapsto 1}^{\langle 00 \mapsto 0 \atop 11 \mapsto 1} \} \\ \end{bmatrix}$$

Associativity of path composition

data Paths where

- \star : Paths
- $p,q,r:\star=\star$

Goal: $(p \cdot q) \cdot r = p \cdot (q \cdot r) \quad \rightsquigarrow \quad [(p \cdot q) \cdot r, p \cdot (q \cdot r), \star \langle s^1 \rangle, \star \langle s^1 \rangle]$ $p \cdot (q \cdot r)$ $\star \langle s^1 \rangle$ $\star \langle s^1 \rangle$ $(p \cdot q) \cdot r$

Associativity of path composition

data Paths where

- \star : Paths
- $p, q, r : \star = \star$

Goal: $(p \cdot q) \cdot r = p \cdot (q \cdot r) \quad \rightsquigarrow \quad [(p \cdot q) \cdot r, p \cdot (q \cdot r), \star \langle s^1 \rangle, \star \langle s^1 \rangle]$ $p \cdot (q \cdot r)$ $\cdot \mathsf{fill}_{p,q \cdot r}$ $\star \langle s^1 \rangle$ $\star \langle s^1 \rangle$ $\cdot\mathsf{fill}_{p\cdot q,r}$ $(p \cdot q) \cdot r$

Unfold Kan compositions of goal boundary

Associativity of path composition

data Paths where

- \star : Paths
- $p, q, r : \star = \star$

Goal: $(p \cdot q) \cdot r = p \cdot (q \cdot r) \quad \rightsquigarrow \quad [(p \cdot q) \cdot r, p \cdot (q \cdot r), \star \langle s^1 \rangle, \star \langle s^1 \rangle]$ $p \cdot (q \cdot r)$ $\cdot \operatorname{fill}_{p,q \cdot r}$ $\star \langle s^2 \rangle$ $\star \langle s^1 \rangle$? ? $\star \langle s^1 \rangle$ $\cdot\mathsf{fill}_{p\cdot q,r}$ $(p \cdot q) \cdot r$

Fill sides with contortions if possible

Filling the open sides

Filler for the back:

Filling the open sides

Filler for the back:

Filling the open sides

Filler for the back:

Filler for the right side:

Open faces can be filled with Kan fillers

Kan composition algorithm

Given goal T, construct a nested Kan composition as follows:

- Solve CSP for open box with front boundary T
 - Unfold Kan compositions if possible
 - Fill as many sides with contortions as possible
 - If not all sides can be filled, use Kan fillers for open faces
- Call composition solver on open sides of the cube

Complete calculus. CSPs stay small, not much memory needed.

Proving Eckmann-Hilton

data EckmannHilton where

- * : EckmannHilton
- p,q: Path (Path EckmannHilton $\star \star$) refl refl

$$\begin{array}{lll} \textbf{Goal:} & p \cdot q = q \cdot p & \rightsquigarrow \\ & [\mathsf{Comp} \left[\star \langle s^1 \rangle, q, \star \langle s^1 \rangle, \star \langle s^1 \rangle \right] p, \mathsf{Comp} \left[\star \langle s^1 \rangle, p, \star \langle s^1 \rangle, \star \langle s^1 \rangle \right] q, \\ & \star \langle s^2 \rangle, \star \langle s^2 \rangle, \star \langle s^2 \rangle, \star \langle s^2 \rangle] \end{array}$$

Proving Eckmann-Hilton

data EckmannHilton where

- * : EckmannHilton
- p, q: Path (Path EckmannHilton $\star \star$) refl refl

$$\begin{array}{lll} \textbf{Goal:} & p \cdot q = q \cdot p & \rightsquigarrow \\ & [\mathsf{Comp} \left[\star \langle s^1 \rangle, q, \star \langle s^1 \rangle, \star \langle s^1 \rangle \right] p, \mathsf{Comp} \left[\star \langle s^1 \rangle, p, \star \langle s^1 \rangle, \star \langle s^1 \rangle \right] q, \\ & \star \langle s^2 \rangle, \star \langle s^2 \rangle, \star \langle s^2 \rangle, \star \langle s^2 \rangle] \end{array}$$

Prove this in two steps:

- Fill the cube $[p,p,q,q,\star\langle s^2\rangle,\star\langle s^2\rangle]$
- Show t : [p, s, r, q] gives rise to $t' : [p \cdot q, r \cdot s, \star \langle s^1 \rangle, \star \langle s^1 \rangle]$ s $r \overbrace{t}^{p} q \mapsto \star \langle s^1 \rangle \overbrace{t'}^{p \cdot q} \star \langle s^1 \rangle$

Conclusions

- The problem of finding Kan cubical cells generalises word problems for various algebraic structures, satisfiability, ... → derivation *spaces* instead of trees
- Desired takeaways:
 - *Practical*: develop a tactic for automatic proof search. Can we derive new proofs?
 - *Foundational*: even in weak model, can we discard most coherences automatically? Have to leave the garden eden of decidability...

Conclusions

- The problem of finding Kan cubical cells generalises word problems for various algebraic structures, satisfiability, ... → derivation *spaces* instead of trees
- Desired takeaways:
 - *Practical*: develop a tactic for automatic proof search. Can we derive new proofs?
 - *Foundational*: even in weak model, can we discard most coherences automatically? Have to leave the garden eden of decidability...

Thank you for your attention!

Demos

In summary

n-tuples of terms in m-element bounded distributive lattice $\stackrel{\simeq}{\simeq} \mod\{0<1\}^m\to\{0<1\}^n$

Formal definitions?

 $\Box_{\wedge\vee}$ is the full subcategory of the category of posets and monotone maps with objects \mathbf{I}^n for $n \ge 0$, where $\mathbf{I} = \{0 < 1\}$. All morphisms in $\Box_{\wedge\vee}$ are of the form $\mathbf{I}^m \to \mathbf{I}^n$, e.g.:

$$s^{i}: \mathbf{I}^{n} \to \mathbf{I}^{n-1}, (e_{1} \dots e_{n}) \mapsto (e_{1} \dots e_{i-1} e_{i+1} \dots e_{n}) \text{ for } 1 \leq i \leq n$$
$$d^{(i,e)}: \mathbf{I}^{n-1} \to \mathbf{I}^{n}, (e_{1} \dots e_{n-1}) \mapsto (e_{1} \dots e_{i-1} e_{i+1} \dots e_{n-1})$$
$$\text{ for } 1 \leq i \leq n, e \in \{0,1\}$$

Cubical sets are objects of $\mathbf{Set}^{\Box_{\wedge\vee}^{op}}$.

Given an *n*-cell p of a cubical set X and a poset map $\sigma: \mathbf{I}^m \to \mathbf{I}^n$, call $p\langle \sigma \rangle := X(\sigma)(p)$ an *m*-contortion of p.

TODO DO WE WANT BELOW NOTION ON BOUNDARY? Its boundary is $\partial(p) := [p\langle d^{(1,0)} \rangle, p\langle d^{(1,1)} \rangle, \dots p\langle d^{(n,0)} \rangle, p\langle d^{(n,1)} \rangle]$

Higher inductive types

We describe cubical sets by giving the generating cells:

A <u>context</u> Γ is a list of declarations $[p_1 : T_1, \ldots, p_k : T_k]$. The cubical set X generated by Γ has non-degenerate cells p_i with $\partial(p_i) = T_i$ valid boundaries and all necessary contortions.

 $\begin{array}{l} \textbf{Interval:} \\ [\texttt{zero}:[], \texttt{one}:[], \texttt{seg}:[\texttt{zero}, \texttt{one}]] & \texttt{zero} \xrightarrow{\texttt{seg}} \texttt{one} \\ \\ \textbf{Sphere:} \\ [\texttt{a}:[], \texttt{p}:[\texttt{a}\langle s^1 \rangle, \texttt{a}\langle s^1 \rangle, \texttt{a}\langle s^1 \rangle, \texttt{a}\langle s^1 \rangle]] & \texttt{a}\langle s^1 \rangle \overbrace{\begin{array}{c} \texttt{p} \\ \texttt{a}\langle s^1 \rangle \end{array}} \\ \textbf{a}\langle s^1 \rangle \overbrace{\begin{array}{c} \texttt{p} \\ \texttt{a}\langle s^1 \rangle \end{array}} \\ \textbf{a}\langle s^1 \rangle \end{array} \\ \\ \textbf{Triangle} \\ [\texttt{x}:[], \texttt{y}:[], \texttt{z}:[], \texttt{p}:[\texttt{x},\texttt{y}], \texttt{q}:[\texttt{y},\texttt{z}], \texttt{r}:[\texttt{x},\texttt{z}], \phi:[\texttt{p},\texttt{r},\texttt{x}\langle s^1 \rangle, \texttt{q}]] \end{array}$

Boundaries as proof goals

Second loopspace: $[a : [], p : [a\langle s^1 \rangle, a\langle s^1 \rangle, a\langle s^1 \rangle, a\langle s^1 \rangle]$

Goal: Find $\sigma: \mathbf{I}^3 \to \mathbf{I}^2$ such that $p\langle \sigma \rangle$ has this boundary:

$$[\mathbf{p} \langle \begin{smallmatrix} 00 \mapsto 00 \\ 10 \mapsto 01 \\ 10 \mapsto 01 \\ 11 \mapsto 11 \end{smallmatrix} \rangle, \mathbf{a} \langle s^2 \rangle]$$

In Cubical: $PathP(\lambda i \rightarrow PathP(\lambda j \rightarrow Path (p (i \land j) (i \lor j)) a)$ $(\lambda j \rightarrow a)(\lambda j \rightarrow a))(\lambda i j \rightarrow a)(\lambda i j \rightarrow a)$

There are $D_3^2 = 20^2 = 400$ poset maps $\mathbf{I}^3 \to \mathbf{I}^2$ which could fit. In general: D_m^n many morphisms $\mathbf{I}^m \to \mathbf{I}^n$, where D_m is the *m*-th Dedekind number $(D_5 = 7581, D_6 = 7828354, ..., D_9 =?)$.

 \rightarrow Need efficient representation for collections of poset maps.

Potential contortions

ppms give us some information of all poset maps in them:

Thereby we have captured these four squares:

Triangle slide

Triangle: $[x:[], y:[], z:[], p:[x, y], q:[y, z], r:[x, z], \phi:[p, r, x\langle s^1 \rangle, q]]$ Goal: Find a cell with boundary $[\mathbf{r}, \mathbf{q}, \mathbf{p}, \mathbf{z} \langle s^1 \rangle]$ q $\begin{array}{c|c} & & & & & & \\ \hline & & & \\ X_{2,1} \end{array} \begin{array}{c} & & & D_{1,0} = \{\mathsf{r} \langle \begin{matrix} \mathsf{01} \mapsto \{0,1\} \\ \mathsf{10} \mapsto \{0\} \\ \mathsf{10} \mapsto \{0\} \\ \mathsf{10} \mapsto \{0\} \\ \mathsf{11} \mapsto \{1\} \end{array} \right)$ $00\mapsto \{0\}$ $X_{1,1}$ $X_{\rm B}$ $X_{2,0}$ $00 \mapsto \{00, 01, 10, 11\}$ $D_B\{..., \phi \langle \begin{matrix} 01 \mapsto \{00, 01, 10, 11\} \\ 10 \mapsto \{00, 01, 10, 11\} \\ 11 \mapsto \{00, 01, 10, 11\} \end{matrix} \rangle \}$ $X_{1,\mathbf{0}}$ r $11 \mapsto \{00, 01, 10, 11\}$

Vertex constraint

Edge constraint

Edge constraint

CSP solution

Example

Triangle: $[x : [], y : [], z : [], p : [x, y], q : [y, z], r : [x, z], \phi : [p, r, x\langle s^1 \rangle, q]]$ q $00 \mapsto 0$ $D_{1,0} = \{\mathsf{p}\langle {}^{01 \mapsto 0, 1}_{10 \mapsto 0} \rangle \}$ $X_{1,1}$ $D_{1,1} = \{ \mathsf{q}_{\substack{00 \mapsto 0\\01 \mapsto 0, 1\\10 \mapsto 0\\11 \mapsto 1}}^{11 \mapsto 1} \}$ $|X_{2,0}|$ $X_{2,1}$ $X_{\rm B}$ р q $D_{1,0} = \{\mathsf{p}\langle_{\substack{10 \mapsto 0 \\ 10 \mapsto 0 \\ 11 \mapsto 1 \\ 1}}^{01 \mapsto 0, 1}\rangle\}$ *X*_{1.0} $00 \mapsto 0$ $D_{1,1} = \{\mathsf{q}\langle_{10\mapsto 0}^{01\mapsto 0,1}\rangle\}$ р $11 \mapsto 1$ $D_B = \{\mathbf{x}_{(10 \mapsto ())}^{00 \mapsto ()}, ..., \mathbf{p}_{(10 \mapsto 0, 1)}^{00 \mapsto 0, 1}, ..., \phi_{(10 \mapsto 00, 01, 10, 11)}^{00 \mapsto 00, 01, 10, 11}, ..., \phi_{(10 \mapsto 00, 01, 10, 11)}^{00 \mapsto 00, 01, 10, 11}\}$ $11 \mapsto 00, 01, 10, 11$ $11 \mapsto ()$ $11 \mapsto 0, 1$

CSP solution

