A Framework for Computational Theories
with Minimal Syntax and Bidirectional Typing

Thiago Felicissimo

Europroofnet WG6 Meeting
April 25, 2023

Logical frameworks Frameworks for defining theories

Unify study and implementation of type theories

Logical frameworks Frameworks for defining theories
Unify study and implementation of type theories
Theoretical interest

= One unified notion of theory, of model, etc

= Theorems proven once and for all

Logical frameworks Frameworks for defining theories
Unify study and implementation of type theories
Theoretical interest

= One unified notion of theory, of model, etc

= Theorems proven once and for all
Practical interest

= One unified implementation
= Prototyping new systems (like with rewrite rules in Agda)

= Rechecking proofs (as in Dedukti)

Following Harper, LFs can be classified in two groups

Syntactic LFs

Semantic LFs

Following Harper, LFs can be classified in two groups

Syntactic LFs

= Fixed definitional equality, hence decidable (main example: ELF)

Semantic LFs

Following Harper, LFs can be classified in two groups

Syntactic LFs

= Fixed definitional equality, hence decidable (main example: ELF)
= Terms derivations encoded as terms (judgments as types)

Semantic LFs

Following Harper, LFs can be classified in two groups

Syntactic LFs

= Fixed definitional equality, hence decidable (main example: ELF)
= Terms derivations encoded as terms (judgments as types)
v Good for formalizing metatheory (Twelf, Beluga)

Semantic LFs

Following Harper, LFs can be classified in two groups

Syntactic LFs

= Fixed definitional equality, hence decidable (main example: ELF)
= Terms derivations encoded as terms (judgments as types)

v Good for formalizing metatheory (Twelf, Beluga)

X Typechecker for the-theery its derivations

Semantic LFs

Following Harper, LFs can be classified in two groups

Syntactic LFs

= Fixed definitional equality, hence decidable (main example: ELF)
= Terms derivations encoded as terms (judgments as types)

v Good for formalizing metatheory (Twelf, Beluga)

X Typechecker for the-theery its derivations

Semantic LFs

v/ Customizable definitional equality, allows defining theories directly

Following Harper, LFs can be classified in two groups

Syntactic LFs

= Fixed definitional equality, hence decidable (main example: ELF)
= Terms derivations encoded as terms (judgments as types)

v Good for formalizing metatheory (Twelf, Beluga)

X Typechecker for the-theery its derivations

Semantic LFs

v/ Customizable definitional equality, allows defining theories directly
= Growing in interest for semantic methods (e.g. Uemura's LF)

Following Harper, LFs can be classified in two groups

Syntactic LFs

= Fixed definitional equality, hence decidable (main example: ELF)
= Terms derivations encoded as terms (judgments as types)

v Good for formalizing metatheory (Twelf, Beluga)

X Typechecker for the-theery its derivations

Semantic LFs

v/ Customizable definitional equality, allows defining theories directly
= Growing in interest for semantic methods (e.g. Uemura's LF)
X Few proposals are “implementable”

Semantic LFs which are implemented:

And romeda (officially not a LF)

Dedukti

Semantic LFs which are implemented:
And romeda (officially not a LF)

= Very general definition of type theories

Dedukti

Semantic LFs which are implemented:
And romeda (officially not a LF)

= Very general definition of type theories
v/ Equality checker for computational and extensionality equality rules

Dedukti

Semantic LFs which are implemented:
And romeda (officially not a LF)

= Very general definition of type theories
v/ Equality checker for computational and extensionality equality rules
X Checker not very fast and not known to be complete (cualy, it can't be)

Dedukti

Semantic LFs which are implemented:
And romeda (officially not a LF)

= Very general definition of type theories

v/ Equality checker for computational and extensionality equality rules
X Checker not very fast and not known to be complete (cualy, it can't be)
X Implements fully annotated syntax: Ax.t = X A (x.B) (x.t)

Dedukti

Semantic LFs which are implemented:
And romeda (officially not a LF)

= Very general definition of type theories

v/ Equality checker for computational and extensionality equality rules
X Checker not very fast and not known to be complete (cualy, it can't be)
X Implements fully annotated syntax: Ax.t = X A (x.B) (x.t)

Dedukti

= Only computational rules, no support for extensionality rules

Semantic LFs which are implemented:
And romeda (officially not a LF)

= Very general definition of type theories

v/ Equality checker for computational and extensionality equality rules
X Checker not very fast and not known to be complete (cualy, it can't be)
X Implements fully annotated syntax: Ax.t = X A (x.B) (x.t)

Dedukti

= Only computational rules, no support for extensionality rules
v Rewriting allows (fast!) theory-agnostic equality checking
(experience rechecking big proof libraries confirms this)

Semantic LFs which are implemented:
And romeda (officially not a LF)

= Very general definition of type theories

v/ Equality checker for computational and extensionality equality rules
X Checker not very fast and not known to be complete (cualy, it can't be)
X Implements fully annotated syntax: Ax.t = X A (x.B) (x.t)

Dedukti

= Only computational rules, no support for extensionality rules

v Rewriting allows (fast!) theory-agnostic equality checking
(experience rechecking big proof libraries confirms this)

X Also fully annotated syntax: Ax.t = X A (x.B) (x.t)

Semantic LFs which are implemented:
And romeda (officially not a LF)

= Very general definition of type theories

v/ Equality checker for computational and extensionality equality rules
X Checker not very fast and not known to be complete (cualy, it can't be)
X Implements fully annotated syntax: Ax.t = X A (x.B) (x.t)

Dedukti

= Only computational rules, no support for extensionality rules
v Rewriting allows (fast!) theory-agnostic equality checking
(experience rechecking big proof libraries confirms this)
X Also fully annotated syntax: Ax.t = X A (x.B) (x.t)
X “Bureaucratic” meaningless terms, not in the image of translation function:

Ax.@tx) = A(0@t) = X((zz) Q1)

1st Contribution | propose CompLF

1st Contribution | propose CompLF

= A logical framework for computational type theories

1st Contribution | propose CompLF

= A logical framework for computational type theories

v Like in Dedukti, fast theory-agnostic equality checking with rewriting

1st Contribution | propose CompLF

= A logical framework for computational type theories
v Like in Dedukti, fast theory-agnostic equality checking with rewriting

v" No bureaucratic terms, only meaningful ones

M2y MeH A(x.C(t X))

1st Contribution | propose CompLF

= A logical framework for computational type theories

v Like in Dedukti, fast theory-agnostic equality checking with rewriting
v" No bureaucratic terms, only meaningful ones

MEz2HG4)} MO A(x.0(t, x))
v/ Supports minimal syntaxes, with erased arguments
N=A:Ty Nx:TmAFB: Ty Mx:TmAFt: Tm B
MEA(x.t): Tm MN(A, x.B)

1st Contribution | propose CompLF

= A logical framework for computational type theories

v Like in Dedukti, fast theory-agnostic equality checking with rewriting
v" No bureaucratic terms, only meaningful ones

Mz2HCH) M) A(x.O(t, x))
v Supports minimal syntaxes, with erased arguments (# implicit arguments)
N=A:Ty Nx:TmAFB: Ty Mx:TmAFt: Tm B
MEA(x.t): Tm MN(A, x.B)

1st Contribution | propose CompLF

= A logical framework for computational type theories

v Like in Dedukti, fast theory-agnostic equality checking with rewriting
v" No bureaucratic terms, only meaningful ones

Mz2HCH) M) A(x.O(t, x))
v Supports minimal syntaxes, with erased arguments (# implicit arguments)
N=A:Ty Nx:TmAFB: Ty Mx:TmAFt: Tm B
MEA(x.t): Tm MN(A, x.B)

Problem Minimal syntax jeopardizes decidability of typing

Typing algorithm might need to guess erased arguments

Bidirectional typing algorithms Alternate between two modes
Check (input: T, ¢, T)
Infer (input: I, t) (output: T)

Bidirectional typing algorithms Alternate between two modes

Check (input: T, ¢, T)
Infer (input: I, t) (output: T)

Allow specify flow of type information in typing rules
C —"*TN(A,x.B) Mx:TmAFt<Tm B
M= Ax.t)<Tm C

Bidirectional typing algorithms Alternate between two modes

Check (input: T, ¢, T)
Infer (input: I, t) (output: T)

Allow specify flow of type information in typing rules
C —"*TN(A,x.B) Mx:TmAFt<Tm B
M= Ax.t)<Tm C

Complement erased arguments very well, explains why they are redundant

Bidirectional typing algorithms Alternate between two modes

Check (input: T, ¢, T)
Infer (input: I, t) (output: T)

Allow specify flow of type information in typing rules
C —"*TN(A,x.B) Mx:TmAFt<Tm B
M= Ax.t)<Tm C

Complement erased arguments very well, explains why they are redundant

Previous work Principles of (dependent) bidirectional typing well-known
(sometimes called McBride's discipline)

However, no formal account of general case (as far as | know)

Bidirectional typing algorithms Alternate between two modes
Check (input: T, ¢, T)
Infer (input: I, t) (output: T)

Allow specify flow of type information in typing rules
C —"*TN(A,x.B) Mx:TmAFt<Tm B
M= Ax.t)<Tm C

Complement erased arguments very well, explains why they are redundant

Previous work Principles of (dependent) bidirectional typing well-known
(sometimes called McBride's discipline)

However, no formal account of general case (as far as | know)

LFs can be used for this!

2nd Contribution Theory-agnostic bidirectional typing algorithm

2nd Contribution Theory-agnostic bidirectional typing algorithm

Can be instantiated by given modes to signature in a mode-correct way

2nd Contribution Theory-agnostic bidirectional typing algorithm

Can be instantiated by given modes to signature in a mode-correct way

v Implemented

2nd Contribution Theory-agnostic bidirectional typing algorithm

Can be instantiated by given modes to signature in a mode-correct way

v Implemented
v’ Sound (assuming confluence and subject reduction)

2nd Contribution Theory-agnostic bidirectional typing algorithm

Can be instantiated by given modes to signature in a mode-correct way

v Implemented
v’ Sound (assuming confluence and subject reduction)
v Complete for well-moded terms (assuming also strong normalisation)

2nd Contribution Theory-agnostic bidirectional typing algorithm

Can be instantiated by given modes to signature in a mode-correct way

v Implemented
v’ Sound (assuming confluence and subject reduction)
v Complete for well-moded terms (assuming also strong normalisation)

You, the theory designer, chooses amount of annotations and completeness

2nd Contribution Theory-agnostic bidirectional typing algorithm

Can be instantiated by given modes to signature in a mode-correct way

v Implemented
v’ Sound (assuming confluence and subject reduction)
v Complete for well-moded terms (assuming also strong normalisation)

You, the theory designer, chooses amount of annotations and completeness

C —*T(A,x.B)
Nx: TmAFt<TmB

[Ax.t) < Tm C

Well-moded = [-normal forms

2nd Contribution Theory-agnostic bidirectional typing algorithm

Can be instantiated by given modes to signature in a mode-correct way

v Implemented
v’ Sound (assuming confluence and subject reduction)
v Complete for well-moded terms (assuming also strong normalisation)

You, the theory designer, chooses amount of annotations and completeness

C —*T(A,x.B) NFA<=Ty
Nx: TmAFt<TmB Nx: TmAFt=TmB
NEAx.t)<=Tm C ME XA x.t) = Tm M(A, x.B)

Well-moded = [-normal forms Well-moded = all terms

2nd Contribution Theory-agnostic bidirectional typing algorithm

Can be instantiated by given modes to signature in a mode-correct way

v Implemented
v’ Sound (assuming confluence and subject reduction)
v Complete for well-moded terms (assuming also strong normalisation)

You, the theory designer, chooses amount of annotations and completeness

C —* N(A,x.B) MFA<Ty
Nx: TmAFt<TmB Nx: TmAFt=TmB
[Ax.t) < Tm C [FA(A x.t) = Tm M(A, x.B)
Well-moded = [-normal forms Well-moded = all terms

For the first time (as far as | know), modular proof of correctness!

ComplLF

An excerpt of its definition

Well-scoped & sorted raw syntax

Terms of sort s in scope 7y

Well-scoped & sorted raw syntax

Terms of sort s in scope 7y

sort = syntactic class scope 7,0 == ()| v, x:d —s

Well-scoped & sorted raw syntax

Terms of sort s in scope 7y

sort = syntactic class scope 7,0 == ()| v, x:d —s

Spine 7y 4 | Spines of “output” scope ¢ in scope «y (substitutions)

Well-scoped & sorted raw syntax

Terms of sort s in scope 7y

sort = syntactic class scope 7,0 == ()| v, x:d —s

Spine 7y 4 | Spines of “output” scope ¢ in scope «y (substitutions)

h:6—segory teSpineyd t € Spine v 4 teTerm~y.y s

h=xorc h(t) € Term v s ¢ € Spine v () t, X, .t € Spine vy (&, x 7 —)

Well-scoped & sorted raw syntax

Terms of sort s in scope 7y

sort = syntactic class scope 7,0 == ()| v, x:d —s
Spine 7y 4 | Spines of “output” scope ¢ in scope «y (substitutions)

h:6—segory teSpineyd t € Spine v 4 teTerm~y.y s
h=xorc h(t) € Term v s & € Spine 7 () t, X, .t € Spine vy (&, x 7 —)

Example By taking pre-signature
= Au(to(x:tm)—tm)—tm ©@:: (t:tm)(u:tm)—tm

Term (X :: tm) tm = \-terms with free variables in X

Well-scoped & sorted raw syntax

Terms of sort s in scope 7y

sort = syntactic class scope 7,0 == ()| v, x:d —s
Spine 7y 4 | Spines of “output” scope ¢ in scope «y (substitutions)

h:6—segory teSpineyd t € Spine v 4 teTerm~y.y s

h=xorc h(t) € Term v s ¢ € Spine v () t, X, .t € Spine vy (&, x 7 —)

Example By taking pre-signature

= Au(to(x:tm)—tm)—tm ©@:: (t:tm)(u:tm)—tm

Term (X :: tm) tm = \-terms with free variables in X

v/ Accurate account of raw syntax

Signatures Description of typing rules

10

Signatures Description of typing rules

Example Dependently-typed A-calculus:
Ty: O
Tm: (A:Ty) = 0O
M: (A:Ty)B:(x:TmA) = Ty) = Ty
A {A:TyHB: (x: Tm A) — Ty}
(t:(x:TmA) — Tm B(x)) — Tm M(A, x.B(x))
Q: {A:Ty}B:(x:Tm A) = Ty}
(t:Tm M(A, x.B(x)))(u: Tm A) — Tm B(u)

10

Dependency erasure map as a design principle to glue the layers

Type layer types contexts signatures

PR

Syntax layer sorts scopes pre-signatures

11

Signatures Description of typing rules

Example Dependently-typed A-calculus:

Ty: O

Tm:

Mn:

A

(A:
(A:

{A:
(t:
s {A:
(t:

Ty) = 0O

Ty)(B: (x: Tm A) — Ty) — Ty

TyHB: (x: Tm A) — Ty}

(x: Tm A) — Tm B(x)) — Tm T(4, x.B(x))
Ty}{B:(x:Tm a) — Ty}

Tm M(4, x.B(x)))(u: Tm A) — Tm B(u)

TEEE

Iz

tty) = O
sty)(Bi(x ntm) = ty) — ty

2 (x i tm) = tm) — tm

ctm)(u i tm) — tm

12

Signatures Description of typing rules

Example Dependently-typed A-calculus:

Ty: O

Tm: (A:
n: (A:
A {A:
(t:
@: {A:
(t:

Ty) = 0O

Ty)(B: (x: Tm A) — Ty) — Ty

TyHB: (x: Tm A) — Ty}

(x: Tm A) — Tm B(x)) — Tm T(4, x.B(x))
Ty}{B:(x:Tm a) — Ty}

Tm M(4, x.B(x)))(u: Tm A) — Tm B(u)

TEEE

Iz

tty) = O
sty)(Bi(x ntm) = ty) — ty

2 (x i tm) = tm) — tm

ctm)(u i tm) — tm

Erased arguments Marked with {—}, removed from the syntax

12

Typing rules With
Ar{A:TyH{B:(x: TmA) — Ty}(t: (x: Tm A) - Tm B(x)) - Tm IN(4,B(x)) € &

we have

13

Typing rules With
Ar{A:TyH{B:(x: TmA) — Ty}(t: (x: Tm A) - Tm B(x)) - Tm IN(4,B(x)) € &

we have

M- TFA:Ty
FrEA:(A:Ty) [x:TmAEB: Ty
A x.B:(A: Ty, B: Tm A — Ty) x: TmAFt: Tm B
Fr-AxB,xt:(A: Ty, B:TmA— Ty, t:(x:TmA) — Tm B(x))
[E A(x.t): Tm (A, x.B)

13

Typing rules With
Ar{A:TyH{B:(x: TmA) — Ty}(t: (x: Tm A) - Tm B(x)) - Tm IN(4,B(x)) € &

we have

M- TFA:Ty
FrEA:(A:Ty) [x:TmAEB: Ty
A x.B:(A: Ty, B: Tm A — Ty) x: TmAFt: Tm B
Fr-AxB,xt:(A: Ty, B:TmA— Ty, t:(x:TmA) — Tm B(x))
[E A(x.t): Tm (A, x.B)

The leaves give the expected typing rule for A

13

Typing rules With
Ar{A:TyH{B:(x: TmA) — Ty}(t: (x: Tm A) - Tm B(x)) - Tm IN(4,B(x)) € &

we have

M- TFA:Ty
FrEA:(A:Ty) [x:TmAEB: Ty
A x.B:(A: Ty, B: Tm A — Ty) x: TmAFt: Tm B
Fr-AxB,xt:(A: Ty, B:TmA— Ty, t:(x:TmA) — Tm B(x))
[E A(x.t): Tm (A, x.B)

The leaves give the expected typing rule for A

v/ Accurate account of typing rules

13

Moded signatures Refine signatures with modes

14

Moded signatures Refine signatures with modes

+ = infer — = check
Ty: O
Tm: (A:Ty)” - 0O
Mt (A:Ty) " B:(x:TmA) = Ty)” — Ty
A7 {A:TyHB: (x: Tm A) — Ty}
(t:(x:TmA) = Tm B(x))~ — Tm (A, x.B(x))
e : {a:

(t:

TyHB: (x: Tm A) — Ty}
Tm M(A, x.B(x)))"(u: Tm A)~ — Tm B(u)

14

Moded signatures Refine signatures with modes

+ = infer — = check

Ty: O
Tm: (A:Ty)” - 0O
Mt (A:Ty) " B:(x:TmA) = Ty)” — Ty
A7 {A:TyHB: (x: Tm A) — Ty}
(t:(x:TmA) = Tm B(x))~ — Tm (A, x.B(x))
@ : {A:Ty}B:(x:TmA) — Ty}
(t: Tm M(A,x.B(x))) (u: Tm &)~ — Tm B(u)

C —"M(A x.B)
Nx: TmAFt<Tm B
M= A(x.t)<=Tm C

14

Moded signatures Refine signatures with modes

+ = infer — = check

Ty: O Ty: O

Tm: (A:Ty)” - 0O Tm: (A

Mt (A:Ty) " B:(x:TmA) = Ty)” — Ty nt: (a

A7 {A:TyHB: (x: Tm A) — Ty} At(A
(t:(x:TmA) = Tm B(x))~ — Tm (A, x.B(x)) (t

@ : {A:Ty}B:(x:TmA) — Ty} @": {a
(t: Tm M(A,x.B(x))) (u: Tm &)~ — Tm B(u) (t

C —"M(A x.B)
Nx: TmAFt<Tm B
M= A(x.t)<=Tm C

:Ty)” = 0O

cTy)"(B: (x: TmA) = Ty)” — Ty
cTy) {B:(x:TmA) — Ty}
:(x:Tm A) — Tm B(x))" — Tm MN(4, x.B(x))
TyHB: (x: Tm A) — Ty}

:Tm M(A, x.B(x))) (u: Tm A)~ — Tm B(u)

14

Moded signatures Refine signatures with modes

+ = infer — = check
Ty: O
Tm: (A:Ty)” - 0O
Mt (A:Ty) " B:(x:TmA) = Ty)” — Ty
A7 {A:TyHB: (x: Tm A) — Ty}
(t:(x:TmA) = Tm B(x))~ — Tm (A, x.B(x))
@ : {A:Ty}B:(x:TmA) — Ty}
(t: Tm M(A,x.B(x))) (u: Tm &)~ — Tm B(u)

C —"M(A x.B)
Nx: TmAFt<Tm B
M= A(x.t)<=Tm C

Ty:

mt :
NV €

ot :

—~ o~~~
=

= O

:Ty)” = 0O
cTy)"(B: (x: TmA) = Ty)” — Ty
:Ty) {B:(x:TmA) — Ty}

=

ct

{A:Ty}{B: (x:Tm A) — Ty}
(t: Tm M(A,x.B(x))) (u: Tm A)~ — Tm B(u)

MN-A<«<Ty
Mx:TmAFt=Tm B

[+ A(A,x.t) = Tm M(A, x.B)

:(x:Tm A) — Tm B(x))" — Tm MN(4, x.B(x))

14

(* Judgment forms *)
symbol Ty : *

symbol Tm (A : Ty)- : *

(* Dependent products (lambda not annotated) *)
symbol+ M (A : Ty)- (B : (x : Tm A) Ty)- : Ty

symbol- A {A : Ty} {B : (_ : Tm A) Ty} (t : (x : Tm A) Tm B(x))- : Tm M(A, x. B(x))
symbol+ @ {A : Ty} {B : (_ : Tm A) Ty} (t : Tm M(A, x. B(x)))+ (u : Tm A)- : Tm B(u)
rew @(A(x. $t(x)), $u) --> $t(su)

symbol+ T : Ty (* Auxiliary base type *)

(* Example *)
let churchl : Tm N(A(T, _. T), _. M(T, _. T)) := A(F. A(x. @(f, x)))

15

(* Glves error *)

(* let redex : Tm M(T, _. T) := A(x. @(A(y.y), X)) *)

(* Dependent products (lambda annotated) *)
symbol+ M' (A : Ty)- (B : (x : Tm A) Ty)- :

symbol+ @' {A : Ty} {B : (_ : Tm A) Ty} (t :

symbol+ A' (A : Ty)- {B : (_ : Tm A) Ty} (t :

rew @'(A'(ST, x. $t(x)), $u) --> $t(Su)

(* Now it works! *)
type A'(T, x. @"(A'(T, y.y), X))
| 1.7k complf/test/ugs.complf 15:0 21%

[type] A'(T, x0. @'(A'(T, x1. x1), x0))
thiago@thiago-work:~/git/complf$

Ty
Tm M'(A, x. B(x)))+ (u

(x : Tm A) Tm B(X))+ :

: ITm(M'(T, x0. T))

: Tm A)- : Tm B(u)

Tm M'(A, x. B(x))

Fundanental (+4)

16

Beyond dependent products
(* Universe *)

symbol+ U : Ty

symbol+ EL (A : Tm U)- : Ty

(* Equality type *)
symbol+ Eq (A : Ty)- (t : Tm A)- (u : Tm A)- : Ty

symbol- refl {A : Ty} {t : Tm A} : Tm Eq(A, t, t)

symbol+ J {A : Ty} {a : Tm A} {b : Tm A} (t : Tm Eq(A, a, b))+
(P:(x:TmA,y: Tm Eq(A, a, X)) Ty)- (prefl : Tm P(a, refl))- : Tm P(b, t)

rew J(refl, x y. $P(x, y), $prefl) --> $prefl

(* Code in U for Eq *)
symbol+ eq (a : Tm U)- (x : Tm EL(a))- (y : Tm EL(a))- : Tm U

rew El(eq($a, $x, $y)) --> Eq(EL($a), $x, $y)

(* Properties of equality *)

let sym : Tm (U, a. N(EL(a), x. M(EL(a), y. M(Eq(EL(a), X, y), _. EQ(EL(a), y, X)))))
= A(a. A(x. A(y. A(p. I(p, z q. Eq(EL(a), z, x), refl)))))

let transp : Tm MU, a. M(U, b. NM(Eq(U, a, b), _. M(EL(a), _. EL(b)))))
:= A(a. A(b. A(p. A(x. I(p, z q. EL(Z), x)))))

17

Beyond dependent products
(* Universe *)

symbol+ U : Ty

symbol+ EL (A : Tm U)- : Ty

(* Equality type *)
symbol+ Eq (A : Ty)- (t : Tm A)- (u : Tm A)- : Ty

symbol- refl {A : Ty} {t : Tm A} : Tm Eq(A, t, t)

symbol+ J {A : Ty} {a : Tm A} {b : Tm A} (t : Tm Eq(A, a, b))+
(P:(x:TmA,y: Tm Eq(A, a, X)) Ty)- (prefl : Tm P(a, refl))- : Tm P(b, t)

rew J(refl, x y. $P(x, y), $prefl) --> $prefl

(* Code in U for Eq *)
symbol+ eq (a : Tm U)- (x : Tm EL(a))- (y : Tm EL(a))- : Tm U

rew El(eq($a, $x, $y)) --> Eq(EL(%$a), $x, $y)

(* Properties of equality *)
let sym : Tm (U, a. N(EL(a), x. M(EL(a), y. M(Eq(EL(a), X, y), _. EQ(EL(a), y, X)))))
:= A(a. A(x. A(y. A(p. I(p, z q. Eq(EL(a), z, x), refl)))))

let transp : Tm MU, a. M(U, b. NM(Eq(U, a, b), _. M(EL(a), _. EL(b)))))
:= A(a. A(b. A(p. A(x. I(p, z q. EL(Z), x)))))
But also other types (X, List, Nat,...), Coquand-style universes, universe polymor-

phism, pure type systems, higher-order logic, etc &y

Conclusion

ComplLF Logical framework for computational type theories

Faithful presentation of syntax, erased arguments

18

https://github.com/thiagofelicissimo/complf

Conclusion

ComplLF Logical framework for computational type theories

Faithful presentation of syntax, erased arguments

Customisable bidirectional typing algorithm

Try it at https://github.com/thiagofelicissimo/complf

18

https://github.com/thiagofelicissimo/complf

Conclusion

ComplLF Logical framework for computational type theories

Faithful presentation of syntax, erased arguments

Customisable bidirectional typing algorithm

Try it at https://github.com/thiagofelicissimo/complf
Thank you for your attention!

18

https://github.com/thiagofelicissimo/complf

