A Framework for Computational Theories with Minimal Syntax and Bidirectional Typing

Thiago Felicissimo

Europroofnet WG6 Meeting

April 25, 2023

Logical frameworks Frameworks for defining theories

Unify study and implementation of type theories

Logical frameworks Frameworks for defining theories

Unify study and implementation of type theories

Theoretical interest

- One unified notion of theory, of model, etc
- Theorems proven once and for all

Logical frameworks Frameworks for defining theories

Unify study and implementation of type theories

Theoretical interest

- One unified notion of theory, of model, etc
- Theorems proven once and for all

Practical interest

- One unified implementation
- Prototyping new systems (like with rewrite rules in Agda)
- Rechecking proofs (as in Dedukti)

Syntactic LFs

Syntactic LFs

• Fixed definitional equality, hence decidable (main example: ELF)

Syntactic LFs

- Fixed definitional equality, hence decidable (main example: ELF)
- Terms derivations encoded as terms (judgments as types)

Syntactic LFs

- Fixed definitional equality, hence decidable (main example: ELF)
- Terms derivations encoded as terms (judgments as types)
- \checkmark Good for formalizing metatheory (Twelf, Beluga)

Syntactic LFs

- Fixed definitional equality, hence decidable (main example: ELF)
- Terms derivations encoded as terms (judgments as types)
- ✓ Good for formalizing metatheory (Twelf, Beluga)
- $\pmb{\varkappa}$ Typechecker for the theory its derivations

Syntactic LFs

- Fixed definitional equality, hence decidable (main example: ELF)
- Terms derivations encoded as terms (judgments as types)
- ✓ Good for formalizing metatheory (Twelf, Beluga)
- **X** Typechecker for the theory its derivations

Semantic LFs

 \checkmark Customizable definitional equality, allows defining theories directly

Syntactic LFs

- Fixed definitional equality, hence decidable (main example: ELF)
- Terms derivations encoded as terms (judgments as types)
- ✓ Good for formalizing metatheory (Twelf, Beluga)
- X Typechecker for the theory its derivations

- \checkmark Customizable definitional equality, allows defining theories directly
- Growing in interest for semantic methods (e.g. Uemura's LF)

Syntactic LFs

- Fixed definitional equality, hence decidable (main example: ELF)
- Terms derivations encoded as terms (judgments as types)
- ✓ Good for formalizing metatheory (Twelf, Beluga)
- X Typechecker for the theory its derivations

- \checkmark Customizable definitional equality, allows defining theories directly
- Growing in interest for semantic methods (e.g. Uemura's LF)
- ✗ Few proposals are "implementable"

Andromeda (officially not a LF)

Andromeda (officially not a LF)

• Very general definition of type theories

Andromeda (officially not a LF)

- Very general definition of type theories
- $\checkmark\,$ Equality checker for computational and extensionality equality rules

Andromeda (officially not a LF)

- Very general definition of type theories
- $\checkmark\,$ Equality checker for computational and extensionality equality rules
- ✗ Checker not very fast and not known to be complete (actually, it can't be)

Andromeda (officially not a LF)

- Very general definition of type theories
- $\checkmark\,$ Equality checker for computational and extensionality equality rules
- $\pmb{\varkappa}$ Checker not very fast and not known to be complete $_{(actually,\,it\,\,can't\,\,be)}$
- ✗ Implements fully annotated syntax: $\lambda x.t \implies \lambda A(x.B)(x.t)$

Andromeda (officially not a LF)

- Very general definition of type theories
- $\checkmark\,$ Equality checker for computational and extensionality equality rules
- ✗ Checker not very fast and not known to be complete (actually, it can't be)
- ✗ Implements fully annotated syntax: $\lambda x.t \implies \lambda A(x.B)(x.t)$

Dedukti

- Only computational rules, no support for extensionality rules

Andromeda (officially not a LF)

- Very general definition of type theories
- \checkmark Equality checker for computational and extensionality equality rules
- X Checker not very fast and not known to be complete (actually, it can't be)
- ✗ Implements fully annotated syntax: $\lambda x.t \implies \lambda A(x.B)(x.t)$

Dedukti

 Only computational rules, no support for extensionality rules
 ✓ Rewriting allows (fast!) theory-agnostic equality checking (experience rechecking big proof libraries confirms this)

Andromeda (officially not a LF)

- Very general definition of type theories
- \checkmark Equality checker for computational and extensionality equality rules
- ✗ Checker not very fast and not known to be complete (actually, it can't be)
- ✗ Implements fully annotated syntax: $\lambda x.t \implies \lambda A(x.B)(x.t)$

- Only computational rules, no support for extensionality rules
- ✓ Rewriting allows (fast!) theory-agnostic equality checking (experience rechecking big proof libraries confirms this)
- ✗ Also fully annotated syntax: $\lambda x.t$ ⇒ $\lambda A(x.B)(x.t)$

Andromeda (officially not a LF)

- Very general definition of type theories
- $\checkmark\,$ Equality checker for computational and extensionality equality rules
- X Checker not very fast and not known to be complete (actually, it can't be)
- ✗ Implements fully annotated syntax: $\lambda x.t \implies \lambda A(x.B)(x.t)$

Dedukti

- Only computational rules, no support for extensionality rules
- ✓ Rewriting allows (fast!) theory-agnostic equality checking (experience rechecking big proof libraries confirms this)
- ★ Also fully annotated syntax: $\lambda x.t \implies \lambda A(x.B)(x.t)$
- ★ "Bureaucratic" meaningless terms, not in the image of translation function: $\lambda (x. @ t x) = \lambda (@ t) = \lambda ((z.z) @ t)$

4

• A logical framework for computational type theories

- A logical framework for computational type theories
- \checkmark Like in Dedukti, fast theory-agnostic equality checking with rewriting

- A logical framework for computational type theories
- \checkmark Like in Dedukti, fast theory-agnostic equality checking with rewriting
- ✓ No bureaucratic terms, only meaningful ones $\lambda((z.z)(@,t)) = \lambda(@(t)) = \lambda(x.@(t,x))$

- A logical framework for computational type theories
- \checkmark Like in Dedukti, fast theory-agnostic equality checking with rewriting
- ✓ No bureaucratic terms, only meaningful ones $\lambda((z.z)(@, t)) = \lambda(@(t)) = \lambda(x.@(t, x))$
- ✓ Supports minimal syntaxes, with *erased arguments*

 $\frac{\Gamma \vdash A : \mathsf{Ty} \qquad \Gamma, x : \mathsf{Tm} \ A \vdash B : \mathsf{Ty} \qquad \Gamma, x : \mathsf{Tm} \ A \vdash t : \mathsf{Tm} \ B}{\Gamma \vdash \lambda(x.t) : \mathsf{Tm} \ \Pi(A, x.B)}$

- A logical framework for computational type theories
- \checkmark Like in Dedukti, fast theory-agnostic equality checking with rewriting
- ✓ No bureaucratic terms, only meaningful ones $\lambda((z.z)(@, t)) = \lambda(@(t)) = \lambda(x.@(t, x))$
- ✓ Supports minimal syntaxes, with *erased arguments* (\neq implicit arguments)

 $\frac{\Gamma \vdash A : \mathsf{Ty} \qquad \Gamma, x : \mathsf{Tm} \ A \vdash B : \mathsf{Ty} \qquad \Gamma, x : \mathsf{Tm} \ A \vdash t : \mathsf{Tm} \ B}{\Gamma \vdash \lambda(x.t) : \mathsf{Tm} \ \Pi(A, x.B)}$

- A logical framework for computational type theories
- \checkmark Like in Dedukti, fast theory-agnostic equality checking with rewriting
- ✓ No bureaucratic terms, only meaningful ones $\frac{\lambda((z.z)(@, t))}{\lambda(@(t))} = \lambda(x.@(t, x))$
- ✓ Supports minimal syntaxes, with *erased arguments* (\neq implicit arguments)

$$\frac{\Gamma \vdash A : \mathsf{Ty} \qquad \Gamma, x : \mathsf{Tm} \ A \vdash B : \mathsf{Ty} \qquad \Gamma, x : \mathsf{Tm} \ A \vdash t : \mathsf{Tm} \ B}{\Gamma \vdash \lambda(x.t) : \mathsf{Tm} \ \Pi(A, x.B)}$$

Problem Minimal syntax jeopardizes decidability of typing

Typing algorithm might need to guess erased arguments

- $\Gamma \vdash t \leftarrow T$ Check (input: Γ, t, T)
- $\Gamma \vdash t \Rightarrow T$ Infer (input: Γ, t) (output: T)

$$\Gamma \vdash t \leftarrow T$$
 Check (input: Γ, t, T)

 $\Gamma \vdash t \Rightarrow T$ Infer (input: Γ, t) (output: T)

Allow specify flow of type information in typing rules

 $\frac{C \longrightarrow^* \Pi(A, x.B) \qquad \Gamma, x: \operatorname{Tm} A \vdash t \Leftarrow \operatorname{Tm} B}{\Gamma \vdash \lambda(x.t) \Leftarrow \operatorname{Tm} C}$

$$\Gamma \vdash t \leftarrow T$$
 Check (input: Γ, t, T)

$$\Gamma \vdash t \Rightarrow T$$
 Infer (input: Γ, t) (output: T)

Allow specify flow of type information in typing rules

$$\frac{C \longrightarrow^* \Pi(A, x.B) \qquad \Gamma, x: \operatorname{Tm} A \vdash t \Leftarrow \operatorname{Tm} B}{\Gamma \vdash \lambda(x.t) \Leftarrow \operatorname{Tm} C}$$

Complement erased arguments very well, explains why they are redundant

$$\Gamma \vdash t \leftarrow T$$
 Check (input: Γ, t, T)

$$\Gamma \vdash t \Rightarrow T$$
 Infer (input: Γ, t) (output: T)

Allow specify flow of type information in typing rules

$$\frac{C \longrightarrow^* \Pi(A, x.B) \qquad \Gamma, x : \operatorname{Tm} A \vdash t \Leftarrow \operatorname{Tm} B}{\Gamma \vdash \lambda(x.t) \Leftarrow \operatorname{Tm} C}$$

Complement erased arguments very well, explains why they are redundant

Previous work Principles of (dependent) bidirectional typing well-known (sometimes called McBride's discipline)

However, no formal account of general case (as far as I know)

$$\Gamma \vdash t \leftarrow T$$
 Check (input: Γ, t, T)

$$\Gamma \vdash t \Rightarrow T$$
 Infer (input: Γ, t) (output: T)

Allow specify flow of type information in typing rules

$$\frac{C \longrightarrow^* \Pi(A, x.B) \qquad \Gamma, x : \operatorname{Tm} A \vdash t \Leftarrow \operatorname{Tm} B}{\Gamma \vdash \lambda(x.t) \Leftarrow \operatorname{Tm} C}$$

Complement erased arguments very well, explains why they are redundant

Previous work Principles of (dependent) bidirectional typing well-known (sometimes called McBride's discipline)

However, no formal account of general case (as far as I know)

LFs can be used for this!

2nd Contribution Theory-agnostic bidirectional typing algorithm

2nd Contribution Theory-agnostic bidirectional typing algorithm

Can be instantiated by given modes to signature in a mode-correct way

2nd Contribution Theory-agnostic bidirectional typing algorithm

Can be instantiated by given modes to signature in a *mode-correct* way

 \checkmark Implemented

Can be instantiated by given modes to signature in a *mode-correct* way

- ✓ Implemented
- \checkmark Sound (assuming confluence and subject reduction)

Can be instantiated by given modes to signature in a *mode-correct* way

- \checkmark Implemented
- ✓ Sound (assuming confluence and subject reduction)
- ✓ Complete for *well-moded terms* (assuming also strong normalisation)

Can be instantiated by given modes to signature in a *mode-correct* way

- ✓ Implemented
- ✓ Sound (assuming confluence and subject reduction)
- ✓ Complete for *well-moded terms* (assuming also strong normalisation)

You, the theory designer, chooses amount of annotations and completeness

Can be instantiated by given modes to signature in a *mode-correct* way

- \checkmark Implemented
- ✓ Sound (assuming confluence and subject reduction)
- ✓ Complete for *well-moded terms* (assuming also strong normalisation)

You, the theory designer, chooses amount of annotations and completeness

$$\frac{C \longrightarrow^* \Pi(A, x.B)}{\Gamma, x : \operatorname{Tm} A \vdash t \Leftarrow \operatorname{Tm} B}$$
$$\frac{\Gamma \vdash \lambda(x.t) \Leftarrow \operatorname{Tm} C}{\Gamma \vdash \lambda(x.t) \Leftarrow \operatorname{Tm} C}$$

Well-moded = β -normal forms

Can be instantiated by given modes to signature in a mode-correct way

- \checkmark Implemented
- ✓ Sound (assuming confluence and subject reduction)
- ✓ Complete for *well-moded terms* (assuming also strong normalisation)

You, the theory designer, chooses amount of annotations and completeness

$C \longrightarrow^* \Pi(A, x.B)$	${\sf \Gamma}\vdash{\sf A}\Leftarrow{\sf Ty}$
$\Gamma, x: \operatorname{Tm} A \vdash t \Leftarrow \operatorname{Tm} B$	$\Gamma, x: Tm \ A \vdash t \Rightarrow Tm \ B$
$\Gamma \vdash \lambda(x.t) \Leftarrow Tm \ C$	$\overline{\Gamma \vdash \lambda(A, x.t) \Rightarrow Tm \ \Pi(A, x.B)}$

Well-moded = β -normal forms

Well-moded = all terms

Can be instantiated by given modes to signature in a mode-correct way

- \checkmark Implemented
- ✓ Sound (assuming confluence and subject reduction)
- ✓ Complete for *well-moded terms* (assuming also strong normalisation)

You, the theory designer, chooses amount of annotations and completeness

$C \longrightarrow^* \Pi(A, x.B)$	$\Gamma \vdash A \Leftarrow Ty$
$\Gamma, x: Tm \ A \vdash t \Leftarrow Tm \ B$	$\Gamma, x: Tm \ A \vdash t \Rightarrow Tm \ B$
$\Gamma \vdash \lambda(x.t) \Leftarrow Tm \ C$	$\overline{\Gamma \vdash \lambda(A, x.t)} \Rightarrow Tm \ \Pi(A, x.B)$

Well-moded = β -normal forms Well-moded = all terms For the first time (as far as I know), modular proof of correctness!

CompLF

An excerpt of its definition

Term γs Terms of sort s in scope γ

Term γs Terms of sort s in scope γ

sort = syntactic class scope $\gamma, \delta ::= () \mid \gamma, x :: \delta \rightarrow s$

Term γs Terms of sort s in scope γ

sort = syntactic class scope $\gamma, \delta ::= () \mid \gamma, x :: \delta \rightarrow s$

Spine $\gamma \delta$ Spines of "output" scope δ in scope γ (substitutions)

h

$$\begin{array}{c|c} \hline \text{Term } \gamma \ s \end{array} & \text{Terms of sort } s \text{ in scope } \gamma \\ \text{sort = syntactic class} & \text{scope } \gamma, \delta ::= () \mid \gamma, x :: \delta \to s \\ \hline \text{Spine } \gamma \ \delta \end{array} & \text{Spines of "output" scope } \delta \text{ in scope } \gamma \text{ (substitutions)} \\ \hline \cdots \delta \to s \in \varsigma \text{ or } \gamma \ \frac{\mathbf{t} \in \text{Spine } \gamma \ \delta}{h = x \text{ or } c} \quad \frac{\mathbf{t} \in \text{Spine } \gamma \ \delta}{h(\mathbf{t}) \in \text{Term } \gamma \ s} \quad \frac{\varepsilon \in \text{Spine } \gamma \ ()}{\varepsilon \in \text{Spine } \gamma \ ()} \quad \frac{\mathbf{t} \in \text{Spine } \gamma \ \delta}{\mathbf{t}, \vec{x}_{\gamma'}.t \in \text{Spine } \gamma \ (\delta, x :: \gamma' \to s)} \end{array}$$

$$\begin{array}{c|c} \hline \text{Term } \gamma \ s \end{array} \quad \text{Terms of sort } s \ \text{in scope } \gamma \\ \text{sort = syntactic class} \qquad \text{scope } \gamma, \delta ::= () \mid \gamma, x :: \delta \to s \\ \hline \text{Spine } \gamma \ \delta \end{array} \quad \text{Spines of "output" scope } \delta \ \text{in scope } \gamma \ \text{(substitutions)} \\ \vdots \ \delta \to s \in \varsigma \ \text{or } \gamma \ \frac{\mathbf{t} \in \text{Spine } \gamma \ \delta}{h(\mathbf{t}) \in \text{Term } \gamma \ s} \quad \frac{\mathbf{t} \in \text{Spine } \gamma \ ()}{\varepsilon \in \text{Spine } \gamma \ ()} \quad \begin{array}{c} \frac{\mathbf{t} \in \text{Spine } \gamma \ \delta \ t \in \text{Term } \gamma.\gamma' \ s}{\mathbf{t}, \vec{x}_{\gamma'}.t \in \text{Spine } \gamma \ (\delta, x :: \gamma' \to s)} \end{array}$$

Example By taking pre-signature

h

 $\varsigma_{\lambda} = -\lambda :: (\texttt{t} :: (\texttt{x} :: \texttt{tm}) \to \texttt{tm}) \to \texttt{tm} \qquad @:: (\texttt{t} :: \texttt{tm})(\texttt{u} :: \texttt{tm}) \to \texttt{tm}$

Term $(\vec{x} :: \vec{tm})$ tm = λ -terms with free variables in \vec{x}

 $\begin{array}{c|c} \hline \text{Term } \gamma \ s \end{array} & \text{Terms of sort } s \text{ in scope } \gamma \\ \text{sort} = \text{syntactic class} & \text{scope } \gamma, \delta ::= () \mid \gamma, x :: \delta \to s \\ \hline & \text{Spine } \gamma \ \delta \end{array} & \text{Spines of "output" scope } \delta \text{ in scope } \gamma \text{ (substitutions)} \\ h :: \delta \to s \in \varsigma \text{ or } \gamma \ \underline{\mathbf{t}} \in \text{Spine } \gamma \ \delta \\ h = x \text{ or } c \end{array} & \frac{\mathbf{t} \in \text{Spine } \gamma \ \delta}{h(\mathbf{t}) \in \text{Term } \gamma \ s} \quad \frac{\mathbf{t} \in \text{Spine } \gamma \ ()}{\varepsilon \in \text{Spine } \gamma \ ()} \quad \frac{\mathbf{t} \in \text{Spine } \gamma \ \delta \ \mathbf{t} \in \text{Term } \gamma . \gamma' \ s}{\mathbf{t}, \vec{x}_{\gamma'}. t \in \text{Spine } \gamma \ (\delta, x :: \gamma' \to s)} \end{array}$

Example By taking pre-signature

 $\varsigma_{\lambda} = -\lambda :: (t :: (x :: tm) \to tm) \to tm$ $@ :: (t :: tm)(u :: tm) \to tm$

Term $(\vec{x} :: \vec{tm})$ tm = λ -terms with free variables in \vec{x}

✓ Accurate account of raw syntax

Signatures Description of typing rules

Signatures Description of typing rules

Example Dependently-typed λ -calculus:

Ту: 🗆

 $\mathsf{Tm}:\ (\mathtt{A}:\mathsf{Ty})\to \Box$

- $\Pi: (\texttt{A}:\mathsf{Ty})(\texttt{B}:(x:\mathsf{Tm}~\texttt{A})\to\mathsf{Ty})\to\mathsf{Ty}$
- $\lambda : \{ \mathtt{A} : \mathsf{Ty} \} \{ \mathtt{B} : (x : \mathsf{Tm} \ \mathtt{A}) \to \mathsf{Ty} \}$

 $(\texttt{t}:(x:\texttt{Tm A})\to\texttt{Tm B}(x))\to\texttt{Tm }\Pi(\texttt{A},x.\texttt{B}(x))$

 $@: {A:Ty}{B:(x:Tm A) \rightarrow Ty}$

 $(\texttt{t}:\texttt{Tm}\ \Pi(\texttt{A},x.\texttt{B}(x)))(\texttt{u}:\texttt{Tm}\ \texttt{A})\rightarrow\texttt{Tm}\ \texttt{B}(\texttt{u})$

Dependency erasure map as a design principle to glue the layers

Signatures Description of typing rules

Example Dependently-typed λ -calculus:

$$(B :: (x :: tm) \rightarrow ty) \rightarrow ty$$

 $:: tm) \rightarrow tm) \rightarrow tm$
 $(u :: tm) \rightarrow tm$

Signatures Description of typing rules

Example Dependently-typed λ -calculus:

Erased arguments Marked with $\{-\}$, removed from the syntax

 $\lambda: \{A: \mathsf{Ty}\}\{B: (x: \mathsf{Tm} A) \to \mathsf{Ty}\}(t: (x: \mathsf{Tm} A) \to \mathsf{Tm} B(x)) \to \mathsf{Tm} \Pi(A, B(x)) \in \Sigma$

we have

 $\lambda: \{A: \mathsf{Ty}\}\{B: (x:\mathsf{Tm}\ A) \to \mathsf{Ty}\}(\texttt{t}: (x:\mathsf{Tm}\ A) \to \mathsf{Tm}\ B(x)) \to \mathsf{Tm}\ \Pi(A, B(x)) \in \Sigma$ we have

 $\frac{\Gamma \vdash \Gamma \vdash A : \mathsf{Ty}}{\Gamma \vdash A : (A : \mathsf{Ty})} \frac{\Gamma, x : \mathsf{Tm} \ A \vdash B : \mathsf{Ty}}{\Gamma \vdash A, x.B : (A : \mathsf{Ty}, \ B : \mathsf{Tm} \ A \to \mathsf{Ty})} \frac{\Gamma, x : \mathsf{Tm} \ A \vdash t : \mathsf{Tm} \ B}{\Gamma \vdash A, x.B, x.t : (A : \mathsf{Ty}, \ B : \mathsf{Tm} \ A \to \mathsf{Ty}, \ t : (x : \mathsf{Tm} \ A) \to \mathsf{Tm} \ B(x))} \\
\frac{\Gamma \vdash \lambda(x.t) : \mathsf{Tm} \ \Pi(A, x.B)}{\Gamma \vdash \lambda(x.t)}$

 $\lambda: \{A: \mathsf{Ty}\}\{B: (x:\mathsf{Tm} \ A) \to \mathsf{Ty}\}(\texttt{t}: (x:\mathsf{Tm} \ A) \to \mathsf{Tm} \ B(x)) \to \mathsf{Tm} \ \Pi(A, B(x)) \in \Sigma$ we have

 $\frac{\Gamma \vdash \Gamma \vdash A : \mathsf{Ty}}{\Gamma \vdash A : (A : \mathsf{Ty})} \frac{\Gamma, x : \mathsf{Tm} \ A \vdash B : \mathsf{Ty}}{\Gamma \vdash A, x.B : (A : \mathsf{Ty}, \ B : \mathsf{Tm} \ A \to \mathsf{Ty})} \frac{\Gamma, x : \mathsf{Tm} \ A \vdash t : \mathsf{Tm} \ B}{\Gamma \vdash A, x.B, x.t : (A : \mathsf{Ty}, \ B : \mathsf{Tm} \ A \to \mathsf{Ty}, \ t : (x : \mathsf{Tm} \ A) \to \mathsf{Tm} \ B(x))} \\
\frac{\Gamma \vdash \lambda(x.t) : \mathsf{Tm} \ \Pi(A, x.B)}{\Gamma \vdash \lambda(x.t)}$

The leaves give the expected typing rule for $\boldsymbol{\lambda}$

 $\lambda: \{A: \mathsf{Ty}\}\{B: (x: \mathsf{Tm} \ A) \to \mathsf{Ty}\}(\texttt{t}: (x: \mathsf{Tm} \ A) \to \mathsf{Tm} \ B(x)) \to \mathsf{Tm} \ \Pi(A, B(x)) \in \Sigma$ we have

 $\frac{\Gamma \vdash \Gamma \vdash A : \mathsf{Ty}}{\Gamma \vdash A : (A : \mathsf{Ty})} \frac{\Gamma, x : \mathsf{Tm} \ A \vdash B : \mathsf{Ty}}{\Gamma \vdash A, x.B : (A : \mathsf{Ty}, \ B : \mathsf{Tm} \ A \to \mathsf{Ty})} \frac{\Gamma, x : \mathsf{Tm} \ A \vdash t : \mathsf{Tm} \ B}{\Gamma \vdash A, x.B, x.t : (A : \mathsf{Ty}, \ B : \mathsf{Tm} \ A \to \mathsf{Ty}, \ t : (x : \mathsf{Tm} \ A) \to \mathsf{Tm} \ B(x))} \\
\frac{\Gamma \vdash \lambda(x.t) : \mathsf{Tm} \ \Pi(A, x.B)}{\Gamma \vdash \lambda(x.t)}$

The leaves give the expected typing rule for $\boldsymbol{\lambda}$

✓ Accurate account of typing rules

+ = infer - = check

 $\begin{array}{rcl} \mathsf{T} y: & \Box \\ \mathsf{T} m: & (\mathtt{A}:\mathsf{T} y)^{-} \to \Box \\ \mathsf{\Pi}^{+}: & (\mathtt{A}:\mathsf{T} y)^{-}(\mathtt{B}:(x:\mathsf{T} m \ \mathtt{A}) \to \mathsf{T} y)^{-} \to \mathsf{T} y \\ \lambda^{-}: & \{\mathtt{A}:\mathsf{T} y\}\{\mathtt{B}:(x:\mathsf{T} m \ \mathtt{A}) \to \mathsf{T} y\} \\ & (\mathtt{t}:(x:\mathsf{T} m \ \mathtt{A}) \to \mathsf{T} m \ \mathtt{B}(x))^{-} \to \mathsf{T} m \ \mathsf{\Pi}(\mathtt{A}, x.\mathtt{B}(x))) \\ \mathfrak{G}^{+}: & \{\mathtt{A}:\mathsf{T} y\}\{\mathtt{B}:(x:\mathsf{T} m \ \mathtt{A}) \to \mathsf{T} y\} \\ & (\mathtt{t}:\mathsf{T} m \ \mathsf{\Pi}(\mathtt{A}, x.\mathtt{B}(x)))^{+}(\mathtt{u}:\mathsf{T} m \ \mathtt{A})^{-} \to \mathsf{T} m \ \mathtt{B}(\mathtt{u}) \end{array}$

+ = infer - = check

 $\begin{array}{rcl} Ty: & \square \\ Tm: & (A:Ty)^- \rightarrow \square \\ \Pi^+: & (A:Ty)^-(B:(x:Tm\ A) \rightarrow Ty)^- \rightarrow Ty \\ \lambda^-: & \{A:Ty\}\{B:(x:Tm\ A) \rightarrow Ty\} \\ & (t:(x:Tm\ A) \rightarrow Tm\ B(x))^- \rightarrow Tm\ \Pi(A, x.B(x))) \\ @^+: & \{A:Ty\}\{B:(x:Tm\ A) \rightarrow Ty\} \\ & (t:Tm\ \Pi(A, x.B(x)))^+(u:Tm\ A)^- \rightarrow Tm\ B(u) \end{array}$

$$\frac{C \longrightarrow^* \Pi(A, x.B)}{\Gamma, x : \operatorname{Tm} A \vdash t \Leftarrow \operatorname{Tm} B} \frac{\Gamma, x : \operatorname{Tm} A \vdash t \Leftrightarrow \operatorname{Tm} B}{\Gamma \vdash \lambda(x.t) \Leftarrow \operatorname{Tm} C}$$

+ = infer - = check

 $\begin{array}{cccc} Ty: \ \Box & Ty: \ \Box & Ty: \ \Box & Ty: \ \Box & Tm: (A \\ Tm: (A:Ty)^- \rightarrow \Box & Tm: (A \\ \Pi^+: (A:Ty)^- (B: (x:Tm A) \rightarrow Ty)^- \rightarrow Ty & \Pi^+: (A \\ \lambda^-: \{A:Ty\}\{B: (x:Tm A) \rightarrow Ty\} & \lambda^+: (A \\ (t: (x:Tm A) \rightarrow Tm B(x))^- \rightarrow Tm \Pi(A, x.B(x)) & (t \\ \mathfrak{Q}^+: \{A:Ty\}\{B: (x:Tm A) \rightarrow Ty\} & \mathfrak{Q}^+: \{A \\ (t:Tm \Pi(A, x.B(x)))^+ (u:Tm A)^- \rightarrow Tm B(u) & (t \\ \end{array}$

 $\begin{array}{rl} \mathsf{Ty}: & \Box \\ \mathsf{Tm}: & (\mathbb{A}:\mathsf{Ty})^{-} \to \Box \\ \Pi^{+}: & (\mathbb{A}:\mathsf{Ty})^{-}(\mathbb{B}:(x:\mathsf{Tm}\ \mathbb{A})\to\mathsf{Ty})^{-}\to\mathsf{Ty} \\ \lambda^{+}: & (\mathbb{A}:\mathsf{Ty})^{-}(\mathbb{B}:(x:\mathsf{Tm}\ \mathbb{A})\to\mathsf{Ty}) \\ & (\mathsf{t}:(x:\mathsf{Tm}\ \mathbb{A})\to\mathsf{Tm}\ \mathbb{B}(x))^{+}\to\mathsf{Tm}\ \Pi(\mathbb{A},x.\mathbb{B}(x)) \\ \mathbb{Q}^{+}: & \{\mathbb{A}:\mathsf{Ty}\}\{\mathbb{B}:(x:\mathsf{Tm}\ \mathbb{A})\to\mathsf{Ty}\} \\ & (\mathsf{t}:\mathsf{Tm}\ \Pi(\mathbb{A},x.\mathbb{B}(x)))^{+}(\mathsf{u}:\mathsf{Tm}\ \mathbb{A})^{-}\to\mathsf{Tm}\ \mathbb{B}(\mathsf{u}) \end{array}$

$$\frac{C \longrightarrow^* \Pi(A, x.B)}{\Gamma, x : \operatorname{Tm} A \vdash t \Leftarrow \operatorname{Tm} B}$$
$$\frac{\Gamma \vdash \lambda(x.t) \Leftarrow \operatorname{Tm} C}{\Gamma \vdash \lambda(x.t) \Leftarrow \operatorname{Tm} C}$$

+ = infer - = check

 $\begin{array}{rcl} \mathsf{T} y: & \Box \\ \mathsf{T} m: & (\mathbb{A}:\mathsf{T} y)^{-} \to \Box \\ \Pi^{+}: & (\mathbb{A}:\mathsf{T} y)^{-}(\mathbb{B}:(x:\mathsf{T} m\;\mathbb{A})\to\mathsf{T} y)^{-}\to\mathsf{T} y \\ \lambda^{-}: & \{\mathbb{A}:\mathsf{T} y\}\{\mathbb{B}:(x:\mathsf{T} m\;\mathbb{A})\to\mathsf{T} y\} \\ & (\mathsf{t}:(x:\mathsf{T} m\;\mathbb{A})\to\mathsf{T} m\;\mathbb{B}(x))^{-}\to\mathsf{T} m\;\Pi(\mathbb{A},x.\mathbb{B}(x))) \\ \mathbb{Q}^{+}: & \{\mathbb{A}:\mathsf{T} y\}\{\mathbb{B}:(x:\mathsf{T} m\;\mathbb{A})\to\mathsf{T} y\} \\ & (\mathsf{t}:\mathsf{T} m\;\Pi(\mathbb{A},x.\mathbb{B}(x)))^{+}(u:\mathsf{T} m\;\mathbb{A})^{-}\to\mathsf{T} m\;\mathbb{B}(u) \end{array}$

$$\begin{array}{l} \mathsf{Ty}: \ \Box \\ \mathsf{Tm}: \ (\mathsf{A}:\mathsf{Ty})^{-} \to \Box \\ \mathsf{\Pi}^{+}: \ (\mathsf{A}:\mathsf{Ty})^{-} (\mathsf{B}:(x:\mathsf{Tm}\;\mathsf{A})\to\mathsf{Ty})^{-}\to\mathsf{Ty} \\ \lambda^{+}: (\mathsf{A}:\mathsf{Ty})^{-} (\mathsf{B}:(x:\mathsf{Tm}\;\mathsf{A})\to\mathsf{Ty}) \\ (\mathsf{t}:(x:\mathsf{Tm}\;\mathsf{A})\to\mathsf{Tm}\;\mathsf{B}(x))^{+}\to\mathsf{Tm}\;\mathsf{\Pi}(\mathsf{A},x.\mathsf{B}(x)) \\ \mathsf{Q}^{+}: \ \{\mathsf{A}:\mathsf{Ty}\}\{\mathsf{B}:(x:\mathsf{Tm}\;\mathsf{A})\to\mathsf{Ty}\} \\ (\mathsf{t}:\mathsf{Tm}\;\mathsf{\Pi}(\mathsf{A},x.\mathsf{B}(x)))^{+} (\mathsf{u}:\mathsf{Tm}\;\mathsf{A})^{-}\to\mathsf{Tm}\;\mathsf{B}(\mathsf{u}) \end{array}$$

 $\frac{C \longrightarrow^* \Pi(A, x.B)}{\prod_{x \in T} F (A, x.t) \leftarrow T F (A, x.t)}$

 $\frac{\Gamma \vdash A \Leftarrow \mathsf{Ty}}{\Gamma, x : \mathsf{Tm} \ A \vdash t \Rightarrow \mathsf{Tm} \ B} \\
\frac{\Gamma \vdash \lambda(A, x.t) \Rightarrow \mathsf{Tm} \ \Pi(A, x.B)}{\Gamma \vdash \lambda(A, x.t) \Rightarrow \mathsf{Tm} \ \Pi(A, x.B)}$

```
(* Judgment forms *)
symbol Tv : *
symbol Tm (A : Ty)- : *
(* Dependent products (lambda not annotated) *)
symbol+ \Pi (A : Ty)- (B : (x : Tm A) Ty)- : Ty
symbol- \lambda {A : Ty} {B : (_ : Tm A) Ty} (t : (x : Tm A) Tm B(x)) - : Tm \Pi(A, x. B(x))
symbol+ @ {A : Ty} {B : (_ : Tm A) Ty} (t : Tm Π(A, x. B(x)))+ (u : Tm A)- : Tm B(u)
rew @(λ(x. $t(x)), $u) --> $t($u)
symbol+ T : Ty (* Auxiliary base type *)
(* Example *)
let church1 : Tm \Pi(\Pi(T, ..., T)) . \Pi(T, ..., T) := \lambda(f, \lambda(x, @(f, x)))
```

```
(* Gives error *)
(* let redex : Tm \Pi(T, ..., T) := \lambda(x, @(\lambda(y,y), x)) *)
(* Dependent products (lambda annotated) *)
symbol+ ∏' (A : Ty)- (B : (x : Tm A) Ty)- : Ty
symbol+ @'{A : Ty} {B : (_ : Tm A) Ty} (t : Tm Π'(A, x. B(x)))+ (u : Tm A)- : Tm B(u)
symbol+ \lambda' (A : Ty)- {B : (_ : Tm A) Ty} (t : (x : Tm A) Tm B(x))+ : Tm \Pi'(A. x. B(x))
rew @'(λ'($T. x. $t(x)), $u) --> $t($u)
(* Now it works! *)
type \lambda'(T, x, @'(\lambda'(T, y,y), x))
1.7k complf/test/wq6.complf 15:0 21%
```

[type] $\lambda'(T, x0. @'(\lambda'(T, x1. x1), x0)) : Tm(\Pi'(T, x0. T))$ thiago@thiago-work:~/git/complf\$

Fundamental (+4)

Beyond dependent products

```
(* Universe *)
symbol+ U : Ty
symbol+ El (A : Tm U)- : Tv
(* Equality type *)
symbol+ Eq (A : Ty)- (t : Tm A)- (u : Tm A)- : Ty
symbol- refl {A : Ty} {t : Tm A} : Tm Eq(A, t, t)
symbol+ J {A : Ty} {a : Tm A} {b : Tm A} (t : Tm Eq(A, a, b))+
        (P : (x : Tm A, y : Tm Eq(A, a, x)) Ty)- (prefl : Tm P(a, refl))- : Tm P(b, t)
rew J(refl. x v. SP(x. v). Sprefl) --> Sprefl
(* Code in U for Eq *)
symbol+ eg (a : Tm U)- (x : Tm El(a))- (v : Tm El(a))- : Tm U
rew El(eq(\hat{s}_a, \hat{s}_x, \hat{s}_y)) --> Eq(El(\hat{s}_a), \hat{s}_x, \hat{s}_y)
(* Properties of equality *)
let svm : Tm \Pi(U. a. \Pi(El(a), x. \Pi(El(a), y. \Pi(Eq(El(a), x, y), \_. Eq(El(a), y, x)))))
     := \lambda(a. \lambda(x. \lambda(y. \lambda(p. J(p, z q. Eq(El(a), z, x), refl))))
let transp : Tm \Pi(U, a. \Pi(U, b. \Pi(Eq(U, a, b), . \Pi(El(a), . El(b)))))
    := \lambda(a. \lambda(b. \lambda(p. \lambda(x. J(p, z q. El(z), x)))))
```

Beyond dependent products

```
(* Universe *)
symbol+ U : Tv
symbol+ El (A : Tm U)- : Tv
(* Equality type *)
symbol+ Eq (A : Ty)- (t : Tm A)- (u : Tm A)- : Ty
symbol- refl {A : Ty} {t : Tm A} : Tm Eq(A, t, t)
symbol+ J {A : Ty} {a : Tm A} {b : Tm A} (t : Tm Eq(A, a, b))+
       (P : (x : Tm A, y : Tm Eq(A, a, x)) Ty)- (prefl : Tm P(a, refl))- : Tm P(b, t)
rew J(refl. x v. SP(x. v). Sprefl) --> Sprefl
(* Code in U for Ea *)
symbol+ eq (a : Tm U)- (x : Tm El(a))- (y : Tm El(a))- : Tm U
rew El(eq(\hat{s}_a, \hat{s}_x, \hat{s}_y)) --> Eq(El(\hat{s}_a), \hat{s}_x, \hat{s}_y)
(* Properties of equality *)
let sym : Tm \Pi(U, a, \Pi(El(a), x, \Pi(El(a), y, \Pi(Eq(El(a), x, y), \_, Eq(El(a), y, x)))))
     := \lambda(a, \lambda(x, \lambda(y, \lambda(p, J(p, z q, Eq(El(a), z, x), refl))))
let transp : Tm \Pi(U, a. \Pi(U, b. \Pi(Eq(U, a, b), . \Pi(El(a), . El(b)))))
     := \lambda(a. \lambda(b. \lambda(p. \lambda(x. J(p, z q. El(z), x)))))
But also other types (\Sigma, List, Nat,...), Coquand-style universes, universe polymor-
phism, pure type systems, higher-order logic, etc.
```

Conclusion

CompLF Logical framework for computational type theories Faithful presentation of syntax, erased arguments

Conclusion

CompLF Logical framework for computational type theories Faithful presentation of syntax, erased arguments

Customisable bidirectional typing algorithm

Try it at https://github.com/thiagofelicissimo/complf

Conclusion

CompLF Logical framework for computational type theories Faithful presentation of syntax, erased arguments

Customisable bidirectional typing algorithm

Try it at https://github.com/thiagofelicissimo/complf

Thank you for your attention!