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Unify study and implementation of type theories
Theoretical interest

= One unified notion of theory, of model, etc

= Theorems proven once and for all
Practical interest

= One unified implementation
= Prototyping new systems (like with rewrite rules in Agda)

= Rechecking proofs (as in Dedukti)
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Following Harper, LFs can be classified in two groups

Syntactic LFs

= Fixed definitional equality, hence decidable (main example: ELF)
= Terms derivations encoded as terms (judgments as types)

v Good for formalizing metatheory (Twelf, Beluga)

X Typechecker for the-theery its derivations

Semantic LFs

v/ Customizable definitional equality, allows defining theories directly
= Growing in interest for semantic methods (e.g. Uemura's LF)
X Few proposals are “implementable”
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Semantic LFs which are implemented:
And romeda (officially not a LF)

= Very general definition of type theories

v/ Equality checker for computational and extensionality equality rules
X Checker not very fast and not known to be complete (cualy, it can't be)
X Implements fully annotated syntax: Ax.t = X A (x.B) (x.t)

Dedukti

= Only computational rules, no support for extensionality rules
v Rewriting allows (fast!) theory-agnostic equality checking
(experience rechecking big proof libraries confirms this)
X Also fully annotated syntax: Ax.t = X A (x.B) (x.t)
X “Bureaucratic” meaningless terms, not in the image of translation function:

Ax.@tx) = A(0@t) = X((zz) Q1)
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1st Contribution | propose CompLF

= A logical framework for computational type theories

v Like in Dedukti, fast theory-agnostic equality checking with rewriting
v" No bureaucratic terms, only meaningful ones

Mz2HCH) M) A(x.O(t, x))
v Supports minimal syntaxes, with erased arguments (# implicit arguments)
N=A:Ty Nx:TmAFB: Ty Mx:TmAFt: Tm B
MEA(x.t): Tm MN(A, x.B)

Problem Minimal syntax jeopardizes decidability of typing

Typing algorithm might need to guess erased arguments
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Check (input: T, ¢, T)
Infer (input: I, t) (output: T)

Allow specify flow of type information in typing rules
C —"*TN(A,x.B) Mx:TmAFt<Tm B
M= Ax.t)<Tm C

Complement erased arguments very well, explains why they are redundant

Previous work Principles of (dependent) bidirectional typing well-known
(sometimes called McBride's discipline)

However, no formal account of general case (as far as | know)

LFs can be used for this!
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2nd Contribution Theory-agnostic bidirectional typing algorithm

Can be instantiated by given modes to signature in a mode-correct way

v Implemented
v’ Sound (assuming confluence and subject reduction)
v Complete for well-moded terms (assuming also strong normalisation)

You, the theory designer, chooses amount of annotations and completeness

C —* N(A,x.B) MFA<Ty
Nx: TmAFt<TmB Nx: TmAFt=TmB
[ Ax.t) < Tm C [ FA(A x.t) = Tm M(A, x.B)
Well-moded = [-normal forms Well-moded = all terms

For the first time (as far as | know), modular proof of correctness!



ComplLF

An excerpt of its definition
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Example By taking pre-signature

= Au(to(x:tm)—tm)—tm ©@:: (t:tm)(u:tm)—tm

Term (X :: tm) tm = \-terms with free variables in X
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Signatures Description of typing rules

Example Dependently-typed A-calculus:
Ty: O
Tm: (A:Ty) = 0O
M: (A:Ty)B:(x:TmA) = Ty) = Ty
A {A:TyHB: (x: Tm A) — Ty}
(t:(x:TmA) — Tm B(x)) — Tm M(A, x.B(x))
Q: {A:Ty}B:(x:Tm A) = Ty}
(t:Tm M(A, x.B(x)))(u: Tm A) — Tm B(u)
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Dependency erasure map as a design principle to glue the layers

Type layer types contexts signatures

PR

Syntax layer sorts scopes pre-signatures

11



Signatures Description of typing rules

Example Dependently-typed A-calculus:

Ty: O

Tm:

Mn:

A

(A:
(A:

{A:
(t:
s {A:
(t:

Ty) = 0O

Ty)(B: (x: Tm A) — Ty) — Ty

TyHB: (x: Tm A) — Ty}

(x: Tm A) — Tm B(x)) — Tm T(4, x.B(x))
Ty}{B:(x:Tm a) — Ty}

Tm M(4, x.B(x)))(u: Tm A) — Tm B(u)

TEEE

Iz

tty) = O
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2 (x i tm) = tm) — tm

ctm)(u i tm) — tm

12



Signatures Description of typing rules

Example Dependently-typed A-calculus:

Ty: O

Tm: (A:
n: (A:
A {A:
(t:
@: {A:
(t:

Ty) = 0O

Ty)(B: (x: Tm A) — Ty) — Ty

TyHB: (x: Tm A) — Ty}

(x: Tm A) — Tm B(x)) — Tm T(4, x.B(x))
Ty}{B:(x:Tm a) — Ty}

Tm M(4, x.B(x)))(u: Tm A) — Tm B(u)

TEEE

Iz

tty) = O
sty)(Bi(x ntm) = ty) — ty

2 (x i tm) = tm) — tm

ctm)(u i tm) — tm

Erased arguments Marked with {—}, removed from the syntax
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(* Judgment forms *)
symbol Ty : *

symbol Tm (A : Ty)- : *

(* Dependent products (lambda not annotated) *)
symbol+ M (A : Ty)- (B : (x : Tm A) Ty)- : Ty

symbol- A {A : Ty} {B : (_ : Tm A) Ty} (t : (x : Tm A) Tm B(x))- : Tm M(A, x. B(x))
symbol+ @ {A : Ty} {B : (_ : Tm A) Ty} (t : Tm M(A, x. B(x)))+ (u : Tm A)- : Tm B(u)
rew @(A(x. $t(x)), $u) --> $t(su)

symbol+ T : Ty (* Auxiliary base type *)

(* Example *)
let churchl : Tm N(A(T, _. T), _. M(T, _. T)) := A(F. A(x. @(f, x)))

15



(* Glves error *)

(* let redex : Tm M(T, _. T) := A(x. @(A(y.y), X)) *)

(* Dependent products (lambda annotated) *)
symbol+ M' (A : Ty)- (B : (x : Tm A) Ty)- :

symbol+ @' {A : Ty} {B : (_ : Tm A) Ty} (t :

symbol+ A' (A : Ty)- {B : (_ : Tm A) Ty} (t :

rew @'(A'(ST, x. $t(x)), $u) --> $t(Su)

(* Now it works! *)
type A'(T, x. @"(A'(T, y.y), X))
| 1.7k complf/test/ugs.complf 15:0 21%

[type] A'(T, x0. @'(A'(T, x1. x1), x0))
thiago@thiago-work:~/git/complf$

Ty
Tm M'(A, x. B(x)))+ (u

(x : Tm A) Tm B(X))+ :

: ITm(M'(T, x0. T))

: Tm A)- : Tm B(u)

Tm M'(A, x. B(x))

Fundanental (+4)

16



Beyond dependent products
(* Universe *)

symbol+ U : Ty

symbol+ EL (A : Tm U)- : Ty

(* Equality type *)
symbol+ Eq (A : Ty)- (t : Tm A)- (u : Tm A)- : Ty

symbol- refl {A : Ty} {t : Tm A} : Tm Eq(A, t, t)

symbol+ J {A : Ty} {a : Tm A} {b : Tm A} (t : Tm Eq(A, a, b))+
(P:(x:TmA,y: Tm Eq(A, a, X)) Ty)- (prefl : Tm P(a, refl))- : Tm P(b, t)

rew J(refl, x y. $P(x, y), $prefl) --> $prefl

(* Code in U for Eq *)
symbol+ eq (a : Tm U)- (x : Tm EL(a))- (y : Tm EL(a))- : Tm U

rew El(eq($a, $x, $y)) --> Eq(EL($a), $x, $y)

(* Properties of equality *)

let sym : Tm (U, a. N(EL(a), x. M(EL(a), y. M(Eq(EL(a), X, y), _. EQ(EL(a), y, X)))))
= A(a. A(x. A(y. A(p. I(p, z q. Eq(EL(a), z, x), refl)))))

let transp : Tm MU, a. M(U, b. NM(Eq(U, a, b), _. M(EL(a), _. EL(b)))))
:= A(a. A(b. A(p. A(x. I(p, z q. EL(Z), x)))))

17



Beyond dependent products
(* Universe *)

symbol+ U : Ty

symbol+ EL (A : Tm U)- : Ty

(* Equality type *)
symbol+ Eq (A : Ty)- (t : Tm A)- (u : Tm A)- : Ty

symbol- refl {A : Ty} {t : Tm A} : Tm Eq(A, t, t)

symbol+ J {A : Ty} {a : Tm A} {b : Tm A} (t : Tm Eq(A, a, b))+
(P:(x:TmA,y: Tm Eq(A, a, X)) Ty)- (prefl : Tm P(a, refl))- : Tm P(b, t)

rew J(refl, x y. $P(x, y), $prefl) --> $prefl

(* Code in U for Eq *)
symbol+ eq (a : Tm U)- (x : Tm EL(a))- (y : Tm EL(a))- : Tm U

rew El(eq($a, $x, $y)) --> Eq(EL(%$a), $x, $y)

(* Properties of equality *)
let sym : Tm (U, a. N(EL(a), x. M(EL(a), y. M(Eq(EL(a), X, y), _. EQ(EL(a), y, X)))))
:= A(a. A(x. A(y. A(p. I(p, z q. Eq(EL(a), z, x), refl)))))

let transp : Tm MU, a. M(U, b. NM(Eq(U, a, b), _. M(EL(a), _. EL(b)))))
:= A(a. A(b. A(p. A(x. I(p, z q. EL(Z), x)))))
But also other types (X, List, Nat,...), Coquand-style universes, universe polymor-

phism, pure type systems, higher-order logic, etc &y
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Thank you for your attention!
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