
A Framework for Computational Theories
with Minimal Syntax and Bidirectional Typing

Thiago Felicissimo

Europroofnet WG6 Meeting
April 25, 2023

1

Logical frameworks Frameworks for defining theories

Unify study and implementation of type theories

Theoretical interest

• One unified notion of theory, of model, etc
• Theorems proven once and for all

Practical interest

• One unified implementation
• Prototyping new systems (like with rewrite rules in Agda)
• Rechecking proofs (as in Dedukti)

2

Logical frameworks Frameworks for defining theories

Unify study and implementation of type theories

Theoretical interest

• One unified notion of theory, of model, etc
• Theorems proven once and for all

Practical interest

• One unified implementation
• Prototyping new systems (like with rewrite rules in Agda)
• Rechecking proofs (as in Dedukti)

2

Logical frameworks Frameworks for defining theories

Unify study and implementation of type theories

Theoretical interest

• One unified notion of theory, of model, etc
• Theorems proven once and for all

Practical interest

• One unified implementation
• Prototyping new systems (like with rewrite rules in Agda)
• Rechecking proofs (as in Dedukti)

2

Following Harper, LFs can be classified in two groups

Syntactic LFs

• Fixed definitional equality, hence decidable (main example: ELF)
• Terms derivations encoded as terms (judgments as types)
✓ Good for formalizing metatheory (Twelf, Beluga)
✗ Typechecker for the theory its derivations

Semantic LFs

✓ Customizable definitional equality, allows defining theories directly
• Growing in interest for semantic methods (e.g. Uemura’s LF)
✗ Few proposals are “implementable”

3

Following Harper, LFs can be classified in two groups

Syntactic LFs

• Fixed definitional equality, hence decidable (main example: ELF)

• Terms derivations encoded as terms (judgments as types)
✓ Good for formalizing metatheory (Twelf, Beluga)
✗ Typechecker for the theory its derivations

Semantic LFs

✓ Customizable definitional equality, allows defining theories directly
• Growing in interest for semantic methods (e.g. Uemura’s LF)
✗ Few proposals are “implementable”

3

Following Harper, LFs can be classified in two groups

Syntactic LFs

• Fixed definitional equality, hence decidable (main example: ELF)
• Terms derivations encoded as terms (judgments as types)

✓ Good for formalizing metatheory (Twelf, Beluga)
✗ Typechecker for the theory its derivations

Semantic LFs

✓ Customizable definitional equality, allows defining theories directly
• Growing in interest for semantic methods (e.g. Uemura’s LF)
✗ Few proposals are “implementable”

3

Following Harper, LFs can be classified in two groups

Syntactic LFs

• Fixed definitional equality, hence decidable (main example: ELF)
• Terms derivations encoded as terms (judgments as types)
✓ Good for formalizing metatheory (Twelf, Beluga)

✗ Typechecker for the theory its derivations

Semantic LFs

✓ Customizable definitional equality, allows defining theories directly
• Growing in interest for semantic methods (e.g. Uemura’s LF)
✗ Few proposals are “implementable”

3

Following Harper, LFs can be classified in two groups

Syntactic LFs

• Fixed definitional equality, hence decidable (main example: ELF)
• Terms derivations encoded as terms (judgments as types)
✓ Good for formalizing metatheory (Twelf, Beluga)
✗ Typechecker for the theory its derivations

Semantic LFs

✓ Customizable definitional equality, allows defining theories directly
• Growing in interest for semantic methods (e.g. Uemura’s LF)
✗ Few proposals are “implementable”

3

Following Harper, LFs can be classified in two groups

Syntactic LFs

• Fixed definitional equality, hence decidable (main example: ELF)
• Terms derivations encoded as terms (judgments as types)
✓ Good for formalizing metatheory (Twelf, Beluga)
✗ Typechecker for the theory its derivations

Semantic LFs

✓ Customizable definitional equality, allows defining theories directly

• Growing in interest for semantic methods (e.g. Uemura’s LF)
✗ Few proposals are “implementable”

3

Following Harper, LFs can be classified in two groups

Syntactic LFs

• Fixed definitional equality, hence decidable (main example: ELF)
• Terms derivations encoded as terms (judgments as types)
✓ Good for formalizing metatheory (Twelf, Beluga)
✗ Typechecker for the theory its derivations

Semantic LFs

✓ Customizable definitional equality, allows defining theories directly
• Growing in interest for semantic methods (e.g. Uemura’s LF)

✗ Few proposals are “implementable”

3

Following Harper, LFs can be classified in two groups

Syntactic LFs

• Fixed definitional equality, hence decidable (main example: ELF)
• Terms derivations encoded as terms (judgments as types)
✓ Good for formalizing metatheory (Twelf, Beluga)
✗ Typechecker for the theory its derivations

Semantic LFs

✓ Customizable definitional equality, allows defining theories directly
• Growing in interest for semantic methods (e.g. Uemura’s LF)
✗ Few proposals are “implementable”

3

Semantic LFs which are implemented:

Andromeda (officially not a LF)

• Very general definition of type theories
✓ Equality checker for computational and extensionality equality rules
✗ Checker not very fast and not known to be complete (actually, it can’t be)

✗ Implements fully annotated syntax: λx .t =⇒ λ A (x .B) (x .t)

Dedukti

• Only computational rules, no support for extensionality rules
✓ Rewriting allows (fast!) theory-agnostic equality checking

(experience rechecking big proof libraries confirms this)
✗ Also fully annotated syntax: λx .t =⇒ λ A (x .B) (x .t)
✗ “Bureaucratic” meaningless terms, not in the image of translation function:

λ (x . @ t x) = λ (@ t) = λ ((z .z) @ t)

4

Semantic LFs which are implemented:

Andromeda (officially not a LF)

• Very general definition of type theories

✓ Equality checker for computational and extensionality equality rules
✗ Checker not very fast and not known to be complete (actually, it can’t be)

✗ Implements fully annotated syntax: λx .t =⇒ λ A (x .B) (x .t)

Dedukti

• Only computational rules, no support for extensionality rules
✓ Rewriting allows (fast!) theory-agnostic equality checking

(experience rechecking big proof libraries confirms this)
✗ Also fully annotated syntax: λx .t =⇒ λ A (x .B) (x .t)
✗ “Bureaucratic” meaningless terms, not in the image of translation function:

λ (x . @ t x) = λ (@ t) = λ ((z .z) @ t)

4

Semantic LFs which are implemented:

Andromeda (officially not a LF)

• Very general definition of type theories
✓ Equality checker for computational and extensionality equality rules

✗ Checker not very fast and not known to be complete (actually, it can’t be)

✗ Implements fully annotated syntax: λx .t =⇒ λ A (x .B) (x .t)

Dedukti

• Only computational rules, no support for extensionality rules
✓ Rewriting allows (fast!) theory-agnostic equality checking

(experience rechecking big proof libraries confirms this)
✗ Also fully annotated syntax: λx .t =⇒ λ A (x .B) (x .t)
✗ “Bureaucratic” meaningless terms, not in the image of translation function:

λ (x . @ t x) = λ (@ t) = λ ((z .z) @ t)

4

Semantic LFs which are implemented:

Andromeda (officially not a LF)

• Very general definition of type theories
✓ Equality checker for computational and extensionality equality rules
✗ Checker not very fast and not known to be complete (actually, it can’t be)

✗ Implements fully annotated syntax: λx .t =⇒ λ A (x .B) (x .t)

Dedukti

• Only computational rules, no support for extensionality rules
✓ Rewriting allows (fast!) theory-agnostic equality checking

(experience rechecking big proof libraries confirms this)
✗ Also fully annotated syntax: λx .t =⇒ λ A (x .B) (x .t)
✗ “Bureaucratic” meaningless terms, not in the image of translation function:

λ (x . @ t x) = λ (@ t) = λ ((z .z) @ t)

4

Semantic LFs which are implemented:

Andromeda (officially not a LF)

• Very general definition of type theories
✓ Equality checker for computational and extensionality equality rules
✗ Checker not very fast and not known to be complete (actually, it can’t be)

✗ Implements fully annotated syntax: λx .t =⇒ λ A (x .B) (x .t)

Dedukti

• Only computational rules, no support for extensionality rules
✓ Rewriting allows (fast!) theory-agnostic equality checking

(experience rechecking big proof libraries confirms this)
✗ Also fully annotated syntax: λx .t =⇒ λ A (x .B) (x .t)
✗ “Bureaucratic” meaningless terms, not in the image of translation function:

λ (x . @ t x) = λ (@ t) = λ ((z .z) @ t)

4

Semantic LFs which are implemented:

Andromeda (officially not a LF)

• Very general definition of type theories
✓ Equality checker for computational and extensionality equality rules
✗ Checker not very fast and not known to be complete (actually, it can’t be)

✗ Implements fully annotated syntax: λx .t =⇒ λ A (x .B) (x .t)

Dedukti

• Only computational rules, no support for extensionality rules

✓ Rewriting allows (fast!) theory-agnostic equality checking
(experience rechecking big proof libraries confirms this)

✗ Also fully annotated syntax: λx .t =⇒ λ A (x .B) (x .t)
✗ “Bureaucratic” meaningless terms, not in the image of translation function:

λ (x . @ t x) = λ (@ t) = λ ((z .z) @ t)

4

Semantic LFs which are implemented:

Andromeda (officially not a LF)

• Very general definition of type theories
✓ Equality checker for computational and extensionality equality rules
✗ Checker not very fast and not known to be complete (actually, it can’t be)

✗ Implements fully annotated syntax: λx .t =⇒ λ A (x .B) (x .t)

Dedukti

• Only computational rules, no support for extensionality rules
✓ Rewriting allows (fast!) theory-agnostic equality checking

(experience rechecking big proof libraries confirms this)

✗ Also fully annotated syntax: λx .t =⇒ λ A (x .B) (x .t)
✗ “Bureaucratic” meaningless terms, not in the image of translation function:

λ (x . @ t x) = λ (@ t) = λ ((z .z) @ t)

4

Semantic LFs which are implemented:

Andromeda (officially not a LF)

• Very general definition of type theories
✓ Equality checker for computational and extensionality equality rules
✗ Checker not very fast and not known to be complete (actually, it can’t be)

✗ Implements fully annotated syntax: λx .t =⇒ λ A (x .B) (x .t)

Dedukti

• Only computational rules, no support for extensionality rules
✓ Rewriting allows (fast!) theory-agnostic equality checking

(experience rechecking big proof libraries confirms this)
✗ Also fully annotated syntax: λx .t =⇒ λ A (x .B) (x .t)

✗ “Bureaucratic” meaningless terms, not in the image of translation function:
λ (x . @ t x) = λ (@ t) = λ ((z .z) @ t)

4

Semantic LFs which are implemented:

Andromeda (officially not a LF)

• Very general definition of type theories
✓ Equality checker for computational and extensionality equality rules
✗ Checker not very fast and not known to be complete (actually, it can’t be)

✗ Implements fully annotated syntax: λx .t =⇒ λ A (x .B) (x .t)

Dedukti

• Only computational rules, no support for extensionality rules
✓ Rewriting allows (fast!) theory-agnostic equality checking

(experience rechecking big proof libraries confirms this)
✗ Also fully annotated syntax: λx .t =⇒ λ A (x .B) (x .t)
✗ “Bureaucratic” meaningless terms, not in the image of translation function:

λ (x . @ t x) = λ (@ t) = λ ((z .z) @ t) 4

1st Contribution I propose CompLF

• A logical framework for computational type theories
✓ Like in Dedukti, fast theory-agnostic equality checking with rewriting
✓ No bureaucratic terms, only meaningful ones

λ((z .z)(@, t)) λ(@(t)) λ(x .@(t, x))
✓ Supports minimal syntaxes, with erased arguments

(̸= implicit arguments)

Γ ⊢ A : Ty Γ, x : Tm A ⊢ B : Ty Γ, x : Tm A ⊢ t : Tm B
Γ ⊢ λ(x .t) : Tm Π(A, x .B)

Problem Minimal syntax jeopardizes decidability of typing

Typing algorithm might need to guess erased arguments

5

1st Contribution I propose CompLF

• A logical framework for computational type theories

✓ Like in Dedukti, fast theory-agnostic equality checking with rewriting
✓ No bureaucratic terms, only meaningful ones

λ((z .z)(@, t)) λ(@(t)) λ(x .@(t, x))
✓ Supports minimal syntaxes, with erased arguments

(̸= implicit arguments)

Γ ⊢ A : Ty Γ, x : Tm A ⊢ B : Ty Γ, x : Tm A ⊢ t : Tm B
Γ ⊢ λ(x .t) : Tm Π(A, x .B)

Problem Minimal syntax jeopardizes decidability of typing

Typing algorithm might need to guess erased arguments

5

1st Contribution I propose CompLF

• A logical framework for computational type theories
✓ Like in Dedukti, fast theory-agnostic equality checking with rewriting

✓ No bureaucratic terms, only meaningful ones
λ((z .z)(@, t)) λ(@(t)) λ(x .@(t, x))

✓ Supports minimal syntaxes, with erased arguments

(̸= implicit arguments)

Γ ⊢ A : Ty Γ, x : Tm A ⊢ B : Ty Γ, x : Tm A ⊢ t : Tm B
Γ ⊢ λ(x .t) : Tm Π(A, x .B)

Problem Minimal syntax jeopardizes decidability of typing

Typing algorithm might need to guess erased arguments

5

1st Contribution I propose CompLF

• A logical framework for computational type theories
✓ Like in Dedukti, fast theory-agnostic equality checking with rewriting
✓ No bureaucratic terms, only meaningful ones

λ((z .z)(@, t)) λ(@(t)) λ(x .@(t, x))

✓ Supports minimal syntaxes, with erased arguments

(̸= implicit arguments)

Γ ⊢ A : Ty Γ, x : Tm A ⊢ B : Ty Γ, x : Tm A ⊢ t : Tm B
Γ ⊢ λ(x .t) : Tm Π(A, x .B)

Problem Minimal syntax jeopardizes decidability of typing

Typing algorithm might need to guess erased arguments

5

1st Contribution I propose CompLF

• A logical framework for computational type theories
✓ Like in Dedukti, fast theory-agnostic equality checking with rewriting
✓ No bureaucratic terms, only meaningful ones

λ((z .z)(@, t)) λ(@(t)) λ(x .@(t, x))
✓ Supports minimal syntaxes, with erased arguments

(̸= implicit arguments)

Γ ⊢ A : Ty Γ, x : Tm A ⊢ B : Ty Γ, x : Tm A ⊢ t : Tm B
Γ ⊢ λ(x .t) : Tm Π(A, x .B)

Problem Minimal syntax jeopardizes decidability of typing

Typing algorithm might need to guess erased arguments

5

1st Contribution I propose CompLF

• A logical framework for computational type theories
✓ Like in Dedukti, fast theory-agnostic equality checking with rewriting
✓ No bureaucratic terms, only meaningful ones

λ((z .z)(@, t)) λ(@(t)) λ(x .@(t, x))
✓ Supports minimal syntaxes, with erased arguments (̸= implicit arguments)

Γ ⊢ A : Ty Γ, x : Tm A ⊢ B : Ty Γ, x : Tm A ⊢ t : Tm B
Γ ⊢ λ(x .t) : Tm Π(A, x .B)

Problem Minimal syntax jeopardizes decidability of typing

Typing algorithm might need to guess erased arguments

5

1st Contribution I propose CompLF

• A logical framework for computational type theories
✓ Like in Dedukti, fast theory-agnostic equality checking with rewriting
✓ No bureaucratic terms, only meaningful ones

λ((z .z)(@, t)) λ(@(t)) λ(x .@(t, x))
✓ Supports minimal syntaxes, with erased arguments (̸= implicit arguments)

Γ ⊢ A : Ty Γ, x : Tm A ⊢ B : Ty Γ, x : Tm A ⊢ t : Tm B
Γ ⊢ λ(x .t) : Tm Π(A, x .B)

Problem Minimal syntax jeopardizes decidability of typing

Typing algorithm might need to guess erased arguments
5

Bidirectional typing algorithms Alternate between two modes

Γ ⊢ t ⇐ T Check (input: Γ, t, T)

Γ ⊢ t ⇒ T Infer (input: Γ, t) (output: T)

Allow specify flow of type information in typing rules
C −→∗ Π(A, x .B) Γ, x : Tm A ⊢ t ⇐ Tm B

Γ ⊢ λ(x .t) ⇐ Tm C

Complement erased arguments very well, explains why they are redundant

Previous work Principles of (dependent) bidirectional typing well-known
(sometimes called McBride’s discipline)

However, no formal account of general case (as far as I know)

LFs can be used for this!

6

Bidirectional typing algorithms Alternate between two modes

Γ ⊢ t ⇐ T Check (input: Γ, t, T)

Γ ⊢ t ⇒ T Infer (input: Γ, t) (output: T)

Allow specify flow of type information in typing rules
C −→∗ Π(A, x .B) Γ, x : Tm A ⊢ t ⇐ Tm B

Γ ⊢ λ(x .t) ⇐ Tm C

Complement erased arguments very well, explains why they are redundant

Previous work Principles of (dependent) bidirectional typing well-known
(sometimes called McBride’s discipline)

However, no formal account of general case (as far as I know)

LFs can be used for this!

6

Bidirectional typing algorithms Alternate between two modes

Γ ⊢ t ⇐ T Check (input: Γ, t, T)

Γ ⊢ t ⇒ T Infer (input: Γ, t) (output: T)

Allow specify flow of type information in typing rules
C −→∗ Π(A, x .B) Γ, x : Tm A ⊢ t ⇐ Tm B

Γ ⊢ λ(x .t) ⇐ Tm C

Complement erased arguments very well, explains why they are redundant

Previous work Principles of (dependent) bidirectional typing well-known
(sometimes called McBride’s discipline)

However, no formal account of general case (as far as I know)

LFs can be used for this!

6

Bidirectional typing algorithms Alternate between two modes

Γ ⊢ t ⇐ T Check (input: Γ, t, T)

Γ ⊢ t ⇒ T Infer (input: Γ, t) (output: T)

Allow specify flow of type information in typing rules
C −→∗ Π(A, x .B) Γ, x : Tm A ⊢ t ⇐ Tm B

Γ ⊢ λ(x .t) ⇐ Tm C

Complement erased arguments very well, explains why they are redundant

Previous work Principles of (dependent) bidirectional typing well-known
(sometimes called McBride’s discipline)

However, no formal account of general case (as far as I know)

LFs can be used for this!

6

Bidirectional typing algorithms Alternate between two modes

Γ ⊢ t ⇐ T Check (input: Γ, t, T)

Γ ⊢ t ⇒ T Infer (input: Γ, t) (output: T)

Allow specify flow of type information in typing rules
C −→∗ Π(A, x .B) Γ, x : Tm A ⊢ t ⇐ Tm B

Γ ⊢ λ(x .t) ⇐ Tm C

Complement erased arguments very well, explains why they are redundant

Previous work Principles of (dependent) bidirectional typing well-known
(sometimes called McBride’s discipline)

However, no formal account of general case (as far as I know)

LFs can be used for this! 6

2nd Contribution Theory-agnostic bidirectional typing algorithm

Can be instantiated by given modes to signature in a mode-correct way

✓ Implemented
✓ Sound (assuming confluence and subject reduction)
✓ Complete for well-moded terms (assuming also strong normalisation)

You, the theory designer, chooses amount of annotations and completeness

C −→∗ Π(A, x .B)
Γ, x : Tm A ⊢ t ⇐ Tm B

Γ ⊢ λ(x .t) ⇐ Tm C

Well-moded = β-normal forms

Γ ⊢ A ⇐ Ty
Γ, x : Tm A ⊢ t ⇒ Tm B

Γ ⊢ λ(A, x .t) ⇒ Tm Π(A, x .B)

Well-moded = all terms

For the first time (as far as I know), modular proof of correctness!

7

2nd Contribution Theory-agnostic bidirectional typing algorithm

Can be instantiated by given modes to signature in a mode-correct way

✓ Implemented
✓ Sound (assuming confluence and subject reduction)
✓ Complete for well-moded terms (assuming also strong normalisation)

You, the theory designer, chooses amount of annotations and completeness

C −→∗ Π(A, x .B)
Γ, x : Tm A ⊢ t ⇐ Tm B

Γ ⊢ λ(x .t) ⇐ Tm C

Well-moded = β-normal forms

Γ ⊢ A ⇐ Ty
Γ, x : Tm A ⊢ t ⇒ Tm B

Γ ⊢ λ(A, x .t) ⇒ Tm Π(A, x .B)

Well-moded = all terms

For the first time (as far as I know), modular proof of correctness!

7

2nd Contribution Theory-agnostic bidirectional typing algorithm

Can be instantiated by given modes to signature in a mode-correct way

✓ Implemented

✓ Sound (assuming confluence and subject reduction)
✓ Complete for well-moded terms (assuming also strong normalisation)

You, the theory designer, chooses amount of annotations and completeness

C −→∗ Π(A, x .B)
Γ, x : Tm A ⊢ t ⇐ Tm B

Γ ⊢ λ(x .t) ⇐ Tm C

Well-moded = β-normal forms

Γ ⊢ A ⇐ Ty
Γ, x : Tm A ⊢ t ⇒ Tm B

Γ ⊢ λ(A, x .t) ⇒ Tm Π(A, x .B)

Well-moded = all terms

For the first time (as far as I know), modular proof of correctness!

7

2nd Contribution Theory-agnostic bidirectional typing algorithm

Can be instantiated by given modes to signature in a mode-correct way

✓ Implemented
✓ Sound (assuming confluence and subject reduction)

✓ Complete for well-moded terms (assuming also strong normalisation)

You, the theory designer, chooses amount of annotations and completeness

C −→∗ Π(A, x .B)
Γ, x : Tm A ⊢ t ⇐ Tm B

Γ ⊢ λ(x .t) ⇐ Tm C

Well-moded = β-normal forms

Γ ⊢ A ⇐ Ty
Γ, x : Tm A ⊢ t ⇒ Tm B

Γ ⊢ λ(A, x .t) ⇒ Tm Π(A, x .B)

Well-moded = all terms

For the first time (as far as I know), modular proof of correctness!

7

2nd Contribution Theory-agnostic bidirectional typing algorithm

Can be instantiated by given modes to signature in a mode-correct way

✓ Implemented
✓ Sound (assuming confluence and subject reduction)
✓ Complete for well-moded terms (assuming also strong normalisation)

You, the theory designer, chooses amount of annotations and completeness

C −→∗ Π(A, x .B)
Γ, x : Tm A ⊢ t ⇐ Tm B

Γ ⊢ λ(x .t) ⇐ Tm C

Well-moded = β-normal forms

Γ ⊢ A ⇐ Ty
Γ, x : Tm A ⊢ t ⇒ Tm B

Γ ⊢ λ(A, x .t) ⇒ Tm Π(A, x .B)

Well-moded = all terms

For the first time (as far as I know), modular proof of correctness!

7

2nd Contribution Theory-agnostic bidirectional typing algorithm

Can be instantiated by given modes to signature in a mode-correct way

✓ Implemented
✓ Sound (assuming confluence and subject reduction)
✓ Complete for well-moded terms (assuming also strong normalisation)

You, the theory designer, chooses amount of annotations and completeness

C −→∗ Π(A, x .B)
Γ, x : Tm A ⊢ t ⇐ Tm B

Γ ⊢ λ(x .t) ⇐ Tm C

Well-moded = β-normal forms

Γ ⊢ A ⇐ Ty
Γ, x : Tm A ⊢ t ⇒ Tm B

Γ ⊢ λ(A, x .t) ⇒ Tm Π(A, x .B)

Well-moded = all terms

For the first time (as far as I know), modular proof of correctness!

7

2nd Contribution Theory-agnostic bidirectional typing algorithm

Can be instantiated by given modes to signature in a mode-correct way

✓ Implemented
✓ Sound (assuming confluence and subject reduction)
✓ Complete for well-moded terms (assuming also strong normalisation)

You, the theory designer, chooses amount of annotations and completeness

C −→∗ Π(A, x .B)
Γ, x : Tm A ⊢ t ⇐ Tm B

Γ ⊢ λ(x .t) ⇐ Tm C

Well-moded = β-normal forms

Γ ⊢ A ⇐ Ty
Γ, x : Tm A ⊢ t ⇒ Tm B

Γ ⊢ λ(A, x .t) ⇒ Tm Π(A, x .B)

Well-moded = all terms

For the first time (as far as I know), modular proof of correctness!

7

2nd Contribution Theory-agnostic bidirectional typing algorithm

Can be instantiated by given modes to signature in a mode-correct way

✓ Implemented
✓ Sound (assuming confluence and subject reduction)
✓ Complete for well-moded terms (assuming also strong normalisation)

You, the theory designer, chooses amount of annotations and completeness

C −→∗ Π(A, x .B)
Γ, x : Tm A ⊢ t ⇐ Tm B

Γ ⊢ λ(x .t) ⇐ Tm C

Well-moded = β-normal forms

Γ ⊢ A ⇐ Ty
Γ, x : Tm A ⊢ t ⇒ Tm B

Γ ⊢ λ(A, x .t) ⇒ Tm Π(A, x .B)

Well-moded = all terms

For the first time (as far as I know), modular proof of correctness!

7

2nd Contribution Theory-agnostic bidirectional typing algorithm

Can be instantiated by given modes to signature in a mode-correct way

✓ Implemented
✓ Sound (assuming confluence and subject reduction)
✓ Complete for well-moded terms (assuming also strong normalisation)

You, the theory designer, chooses amount of annotations and completeness

C −→∗ Π(A, x .B)
Γ, x : Tm A ⊢ t ⇐ Tm B

Γ ⊢ λ(x .t) ⇐ Tm C

Well-moded = β-normal forms

Γ ⊢ A ⇐ Ty
Γ, x : Tm A ⊢ t ⇒ Tm B

Γ ⊢ λ(A, x .t) ⇒ Tm Π(A, x .B)

Well-moded = all terms

For the first time (as far as I know), modular proof of correctness! 7

CompLF
An excerpt of its definition

8

Well-scoped & sorted raw syntax

Term γ s Terms of sort s in scope γ

sort = syntactic class scope γ, δ ::= () | γ, x :: δ → s

Spine γ δ Spines of “output” scope δ in scope γ (substitutions)

h :: δ → s ∈ ς or γ

h = x or c
t ∈ Spine γ δ

h(t) ∈ Term γ s ε ∈ Spine γ ()
t ∈ Spine γ δ t ∈ Term γ.γ′ s
t, x⃗γ′ .t ∈ Spine γ (δ, x :: γ′ → s)

Example By taking pre-signature

ςλ = λ :: (t :: (x :: tm) → tm) → tm @ :: (t :: tm)(u :: tm) → tm

Term (x⃗ :: t⃗m) tm = λ-terms with free variables in x⃗

✓ Accurate account of raw syntax

9

Well-scoped & sorted raw syntax

Term γ s Terms of sort s in scope γ

sort = syntactic class scope γ, δ ::= () | γ, x :: δ → s

Spine γ δ Spines of “output” scope δ in scope γ (substitutions)

h :: δ → s ∈ ς or γ

h = x or c
t ∈ Spine γ δ

h(t) ∈ Term γ s ε ∈ Spine γ ()
t ∈ Spine γ δ t ∈ Term γ.γ′ s
t, x⃗γ′ .t ∈ Spine γ (δ, x :: γ′ → s)

Example By taking pre-signature

ςλ = λ :: (t :: (x :: tm) → tm) → tm @ :: (t :: tm)(u :: tm) → tm

Term (x⃗ :: t⃗m) tm = λ-terms with free variables in x⃗

✓ Accurate account of raw syntax

9

Well-scoped & sorted raw syntax

Term γ s Terms of sort s in scope γ

sort = syntactic class scope γ, δ ::= () | γ, x :: δ → s

Spine γ δ Spines of “output” scope δ in scope γ (substitutions)

h :: δ → s ∈ ς or γ

h = x or c
t ∈ Spine γ δ

h(t) ∈ Term γ s ε ∈ Spine γ ()
t ∈ Spine γ δ t ∈ Term γ.γ′ s
t, x⃗γ′ .t ∈ Spine γ (δ, x :: γ′ → s)

Example By taking pre-signature

ςλ = λ :: (t :: (x :: tm) → tm) → tm @ :: (t :: tm)(u :: tm) → tm

Term (x⃗ :: t⃗m) tm = λ-terms with free variables in x⃗

✓ Accurate account of raw syntax

9

Well-scoped & sorted raw syntax

Term γ s Terms of sort s in scope γ

sort = syntactic class scope γ, δ ::= () | γ, x :: δ → s

Spine γ δ Spines of “output” scope δ in scope γ (substitutions)

h :: δ → s ∈ ς or γ

h = x or c
t ∈ Spine γ δ

h(t) ∈ Term γ s ε ∈ Spine γ ()
t ∈ Spine γ δ t ∈ Term γ.γ′ s
t, x⃗γ′ .t ∈ Spine γ (δ, x :: γ′ → s)

Example By taking pre-signature

ςλ = λ :: (t :: (x :: tm) → tm) → tm @ :: (t :: tm)(u :: tm) → tm

Term (x⃗ :: t⃗m) tm = λ-terms with free variables in x⃗

✓ Accurate account of raw syntax

9

Well-scoped & sorted raw syntax

Term γ s Terms of sort s in scope γ

sort = syntactic class scope γ, δ ::= () | γ, x :: δ → s

Spine γ δ Spines of “output” scope δ in scope γ (substitutions)

h :: δ → s ∈ ς or γ

h = x or c
t ∈ Spine γ δ

h(t) ∈ Term γ s ε ∈ Spine γ ()
t ∈ Spine γ δ t ∈ Term γ.γ′ s
t, x⃗γ′ .t ∈ Spine γ (δ, x :: γ′ → s)

Example By taking pre-signature

ςλ = λ :: (t :: (x :: tm) → tm) → tm @ :: (t :: tm)(u :: tm) → tm

Term (x⃗ :: t⃗m) tm = λ-terms with free variables in x⃗

✓ Accurate account of raw syntax

9

Well-scoped & sorted raw syntax

Term γ s Terms of sort s in scope γ

sort = syntactic class scope γ, δ ::= () | γ, x :: δ → s

Spine γ δ Spines of “output” scope δ in scope γ (substitutions)

h :: δ → s ∈ ς or γ

h = x or c
t ∈ Spine γ δ

h(t) ∈ Term γ s ε ∈ Spine γ ()
t ∈ Spine γ δ t ∈ Term γ.γ′ s
t, x⃗γ′ .t ∈ Spine γ (δ, x :: γ′ → s)

Example By taking pre-signature

ςλ = λ :: (t :: (x :: tm) → tm) → tm @ :: (t :: tm)(u :: tm) → tm

Term (x⃗ :: t⃗m) tm = λ-terms with free variables in x⃗

✓ Accurate account of raw syntax 9

Signatures Description of typing rules

Example Dependently-typed λ-calculus:

Ty : □

Tm : (A : Ty) → □

Π : (A : Ty)(B : (x : Tm A) → Ty) → Ty
λ : {A : Ty}{B : (x : Tm A) → Ty}

(t : (x : Tm A) → Tm B(x)) → Tm Π(A, x .B(x))
@ : {A : Ty}{B : (x : Tm A) → Ty}

(t : Tm Π(A, x .B(x)))(u : Tm A) → Tm B(u)

10

Signatures Description of typing rules

Example Dependently-typed λ-calculus:

Ty : □

Tm : (A : Ty) → □

Π : (A : Ty)(B : (x : Tm A) → Ty) → Ty
λ : {A : Ty}{B : (x : Tm A) → Ty}

(t : (x : Tm A) → Tm B(x)) → Tm Π(A, x .B(x))
@ : {A : Ty}{B : (x : Tm A) → Ty}

(t : Tm Π(A, x .B(x)))(u : Tm A) → Tm B(u)

10

Dependency erasure map as a design principle to glue the layers

Type layer types contexts signatures

Syntax layer sorts scopes pre-signatures
|−| |−| |−|

11

Signatures Description of typing rules

Example Dependently-typed λ-calculus:

Ty : □
|−|

7−−→ Ty :: □

Tm : (A : Ty) → □
|−|

7−−→ Tm :: (A :: ty) → □

Π : (A : Ty)(B : (x : Tm A) → Ty) → Ty
|−|

7−−→ Π :: (A :: ty)(B :: (x :: tm) → ty) → ty

λ : {A : Ty}{B : (x : Tm A) → Ty}
|−|

7−−→ λ :: (t :: (x :: tm) → tm) → tm

(t : (x : Tm A) → Tm B(x)) → Tm Π(A, x .B(x))

@ : {A : Ty}{B : (x : Tm A) → Ty}
|−|

7−−→ @ :: (t :: tm)(u :: tm) → tm

(t : Tm Π(A, x .B(x)))(u : Tm A) → Tm B(u)

Erased arguments Marked with {−}, removed from the syntax

12

Signatures Description of typing rules

Example Dependently-typed λ-calculus:

Ty : □
|−|

7−−→ Ty :: □

Tm : (A : Ty) → □
|−|

7−−→ Tm :: (A :: ty) → □

Π : (A : Ty)(B : (x : Tm A) → Ty) → Ty
|−|

7−−→ Π :: (A :: ty)(B :: (x :: tm) → ty) → ty

λ : {A : Ty}{B : (x : Tm A) → Ty}
|−|

7−−→ λ :: (t :: (x :: tm) → tm) → tm

(t : (x : Tm A) → Tm B(x)) → Tm Π(A, x .B(x))

@ : {A : Ty}{B : (x : Tm A) → Ty}
|−|

7−−→ @ :: (t :: tm)(u :: tm) → tm

(t : Tm Π(A, x .B(x)))(u : Tm A) → Tm B(u)

Erased arguments Marked with {−}, removed from the syntax

12

Typing rules With
λ : {A : Ty}{B : (x : Tm A) → Ty}(t : (x : Tm A) → Tm B(x)) → Tm Π(A, B(x)) ∈ Σ

we have

Γ ⊢ Γ ⊢ A : Ty
Γ ⊢ A : (A : Ty) Γ, x : Tm A ⊢ B : Ty

Γ ⊢ A, x .B : (A : Ty, B : Tm A → Ty) Γ, x : Tm A ⊢ t : Tm B
Γ ⊢ A, x .B, x .t : (A : Ty, B : Tm A → Ty, t : (x : Tm A) → Tm B(x))

Γ ⊢ λ(x .t) : Tm Π(A, x .B)

The leaves give the expected typing rule for λ

✓ Accurate account of typing rules

13

Typing rules With
λ : {A : Ty}{B : (x : Tm A) → Ty}(t : (x : Tm A) → Tm B(x)) → Tm Π(A, B(x)) ∈ Σ

we have

Γ ⊢ Γ ⊢ A : Ty
Γ ⊢ A : (A : Ty) Γ, x : Tm A ⊢ B : Ty

Γ ⊢ A, x .B : (A : Ty, B : Tm A → Ty) Γ, x : Tm A ⊢ t : Tm B
Γ ⊢ A, x .B, x .t : (A : Ty, B : Tm A → Ty, t : (x : Tm A) → Tm B(x))

Γ ⊢ λ(x .t) : Tm Π(A, x .B)

The leaves give the expected typing rule for λ

✓ Accurate account of typing rules

13

Typing rules With
λ : {A : Ty}{B : (x : Tm A) → Ty}(t : (x : Tm A) → Tm B(x)) → Tm Π(A, B(x)) ∈ Σ

we have

Γ ⊢ Γ ⊢ A : Ty
Γ ⊢ A : (A : Ty) Γ, x : Tm A ⊢ B : Ty

Γ ⊢ A, x .B : (A : Ty, B : Tm A → Ty) Γ, x : Tm A ⊢ t : Tm B
Γ ⊢ A, x .B, x .t : (A : Ty, B : Tm A → Ty, t : (x : Tm A) → Tm B(x))

Γ ⊢ λ(x .t) : Tm Π(A, x .B)

The leaves give the expected typing rule for λ

✓ Accurate account of typing rules

13

Typing rules With
λ : {A : Ty}{B : (x : Tm A) → Ty}(t : (x : Tm A) → Tm B(x)) → Tm Π(A, B(x)) ∈ Σ

we have

Γ ⊢ Γ ⊢ A : Ty
Γ ⊢ A : (A : Ty) Γ, x : Tm A ⊢ B : Ty

Γ ⊢ A, x .B : (A : Ty, B : Tm A → Ty) Γ, x : Tm A ⊢ t : Tm B
Γ ⊢ A, x .B, x .t : (A : Ty, B : Tm A → Ty, t : (x : Tm A) → Tm B(x))

Γ ⊢ λ(x .t) : Tm Π(A, x .B)

The leaves give the expected typing rule for λ

✓ Accurate account of typing rules
13

Moded signatures Refine signatures with modes

+ = infer − = check

Ty : □

Tm : (A : Ty)− → □

Π+ : (A : Ty)−(B : (x : Tm A) → Ty)− → Ty

λ− : {A : Ty}{B : (x : Tm A) → Ty}

(t : (x : Tm A) → Tm B(x))− → Tm Π(A, x .B(x))

@+ : {A : Ty}{B : (x : Tm A) → Ty}

(t : Tm Π(A, x .B(x)))+(u : Tm A)− → Tm B(u)

C −→∗ Π(A, x .B)
Γ, x : Tm A ⊢ t ⇐ Tm B

Γ ⊢ λ(x .t) ⇐ Tm C

Ty : □

Tm : (A : Ty)− → □

Π+ : (A : Ty)−(B : (x : Tm A) → Ty)− → Ty

λ+ : (A : Ty)−{B : (x : Tm A) → Ty}

(t : (x : Tm A) → Tm B(x))+ → Tm Π(A, x .B(x))

@+ : {A : Ty}{B : (x : Tm A) → Ty}

(t : Tm Π(A, x .B(x)))+(u : Tm A)− → Tm B(u)

Γ ⊢ A ⇐ Ty
Γ, x : Tm A ⊢ t ⇒ Tm B

Γ ⊢ λ(A, x .t) ⇒ Tm Π(A, x .B)

14

Moded signatures Refine signatures with modes

+ = infer − = check

Ty : □

Tm : (A : Ty)− → □

Π+ : (A : Ty)−(B : (x : Tm A) → Ty)− → Ty

λ− : {A : Ty}{B : (x : Tm A) → Ty}

(t : (x : Tm A) → Tm B(x))− → Tm Π(A, x .B(x))

@+ : {A : Ty}{B : (x : Tm A) → Ty}

(t : Tm Π(A, x .B(x)))+(u : Tm A)− → Tm B(u)

C −→∗ Π(A, x .B)
Γ, x : Tm A ⊢ t ⇐ Tm B

Γ ⊢ λ(x .t) ⇐ Tm C

Ty : □

Tm : (A : Ty)− → □

Π+ : (A : Ty)−(B : (x : Tm A) → Ty)− → Ty

λ+ : (A : Ty)−{B : (x : Tm A) → Ty}

(t : (x : Tm A) → Tm B(x))+ → Tm Π(A, x .B(x))

@+ : {A : Ty}{B : (x : Tm A) → Ty}

(t : Tm Π(A, x .B(x)))+(u : Tm A)− → Tm B(u)

Γ ⊢ A ⇐ Ty
Γ, x : Tm A ⊢ t ⇒ Tm B

Γ ⊢ λ(A, x .t) ⇒ Tm Π(A, x .B)

14

Moded signatures Refine signatures with modes

+ = infer − = check

Ty : □

Tm : (A : Ty)− → □

Π+ : (A : Ty)−(B : (x : Tm A) → Ty)− → Ty

λ− : {A : Ty}{B : (x : Tm A) → Ty}

(t : (x : Tm A) → Tm B(x))− → Tm Π(A, x .B(x))

@+ : {A : Ty}{B : (x : Tm A) → Ty}

(t : Tm Π(A, x .B(x)))+(u : Tm A)− → Tm B(u)

C −→∗ Π(A, x .B)
Γ, x : Tm A ⊢ t ⇐ Tm B

Γ ⊢ λ(x .t) ⇐ Tm C

Ty : □

Tm : (A : Ty)− → □

Π+ : (A : Ty)−(B : (x : Tm A) → Ty)− → Ty

λ+ : (A : Ty)−{B : (x : Tm A) → Ty}

(t : (x : Tm A) → Tm B(x))+ → Tm Π(A, x .B(x))

@+ : {A : Ty}{B : (x : Tm A) → Ty}

(t : Tm Π(A, x .B(x)))+(u : Tm A)− → Tm B(u)

Γ ⊢ A ⇐ Ty
Γ, x : Tm A ⊢ t ⇒ Tm B

Γ ⊢ λ(A, x .t) ⇒ Tm Π(A, x .B)

14

Moded signatures Refine signatures with modes

+ = infer − = check

Ty : □

Tm : (A : Ty)− → □

Π+ : (A : Ty)−(B : (x : Tm A) → Ty)− → Ty

λ− : {A : Ty}{B : (x : Tm A) → Ty}

(t : (x : Tm A) → Tm B(x))− → Tm Π(A, x .B(x))

@+ : {A : Ty}{B : (x : Tm A) → Ty}

(t : Tm Π(A, x .B(x)))+(u : Tm A)− → Tm B(u)

C −→∗ Π(A, x .B)
Γ, x : Tm A ⊢ t ⇐ Tm B

Γ ⊢ λ(x .t) ⇐ Tm C

Ty : □

Tm : (A : Ty)− → □

Π+ : (A : Ty)−(B : (x : Tm A) → Ty)− → Ty

λ+ : (A : Ty)−{B : (x : Tm A) → Ty}

(t : (x : Tm A) → Tm B(x))+ → Tm Π(A, x .B(x))

@+ : {A : Ty}{B : (x : Tm A) → Ty}

(t : Tm Π(A, x .B(x)))+(u : Tm A)− → Tm B(u)

Γ ⊢ A ⇐ Ty
Γ, x : Tm A ⊢ t ⇒ Tm B

Γ ⊢ λ(A, x .t) ⇒ Tm Π(A, x .B)

14

Moded signatures Refine signatures with modes

+ = infer − = check

Ty : □

Tm : (A : Ty)− → □

Π+ : (A : Ty)−(B : (x : Tm A) → Ty)− → Ty

λ− : {A : Ty}{B : (x : Tm A) → Ty}

(t : (x : Tm A) → Tm B(x))− → Tm Π(A, x .B(x))

@+ : {A : Ty}{B : (x : Tm A) → Ty}

(t : Tm Π(A, x .B(x)))+(u : Tm A)− → Tm B(u)

C −→∗ Π(A, x .B)
Γ, x : Tm A ⊢ t ⇐ Tm B

Γ ⊢ λ(x .t) ⇐ Tm C

Ty : □

Tm : (A : Ty)− → □

Π+ : (A : Ty)−(B : (x : Tm A) → Ty)− → Ty

λ+ : (A : Ty)−{B : (x : Tm A) → Ty}

(t : (x : Tm A) → Tm B(x))+ → Tm Π(A, x .B(x))

@+ : {A : Ty}{B : (x : Tm A) → Ty}

(t : Tm Π(A, x .B(x)))+(u : Tm A)− → Tm B(u)

Γ ⊢ A ⇐ Ty
Γ, x : Tm A ⊢ t ⇒ Tm B

Γ ⊢ λ(A, x .t) ⇒ Tm Π(A, x .B) 14

15

16

Beyond dependent products

But also other types (Σ, List, Nat,...), Coquand-style universes, universe polymor-
phism, pure type systems, higher-order logic, etc

17

Beyond dependent products

But also other types (Σ, List, Nat,...), Coquand-style universes, universe polymor-
phism, pure type systems, higher-order logic, etc 17

Conclusion

CompLF Logical framework for computational type theories

Faithful presentation of syntax, erased arguments

Customisable bidirectional typing algorithm

Try it at https://github.com/thiagofelicissimo/complf

Thank you for your attention!

18

https://github.com/thiagofelicissimo/complf

Conclusion

CompLF Logical framework for computational type theories

Faithful presentation of syntax, erased arguments

Customisable bidirectional typing algorithm

Try it at https://github.com/thiagofelicissimo/complf

Thank you for your attention!

18

https://github.com/thiagofelicissimo/complf

Conclusion

CompLF Logical framework for computational type theories

Faithful presentation of syntax, erased arguments

Customisable bidirectional typing algorithm

Try it at https://github.com/thiagofelicissimo/complf

Thank you for your attention!

18

https://github.com/thiagofelicissimo/complf

