Profinite λ **-terms and parametricity**

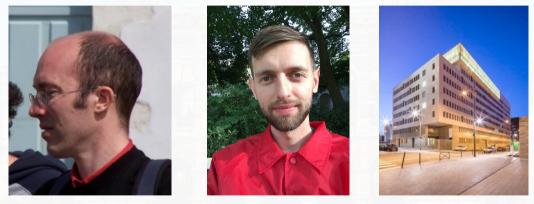
Vincent Moreau, joint work with Paul-André Melliès and Sam van Gool

WG6 meeting, Wien April the 25th, 2023

IRIF, Université Paris Cité, Inria Paris

Who am I?

PhD student since September 2021. This is joint work with my two advisors.



Paul-André Melliès

Sam van Gool

at IRIF, Paris

Regular languages have a central place in theoretical computer science. Profinite methods are well established for words using finite monoids.

Salvati proposed a notion of regular language of $\lambda\text{-terms}$ using semantic tools.

Contribution: definition of profinite λ -terms using the CCC **FinSet** such that

profinite words are in bijection with profinite λ -terms

and living in harmony with Stone duality and the principles of Reynolds parametricity.

Languages

Regular languages of words

Let Σ be a finite alphabet, M be a finite monoid and $p: \Sigma \to M$ a set-theoretic function. We write \bar{p} for the associated monoid homomorphism $\Sigma^* \to M$.

For each subset $F \subseteq M$, the set

$$L_F := \{w \in \Sigma^* \mid \overline{p}(w) \in F\}$$

is a regular language. These sets assemble into the Boolean algebra

$$\operatorname{Reg}_M \langle \Sigma \rangle := \{L_F : F \subseteq M\}.$$

When M ranges over all finite monoids, we get in this way all regular languages:

$$\operatorname{\mathsf{Reg}} \langle \Sigma
angle \; = \; igcup_M \operatorname{\mathsf{Reg}}_M \langle \Sigma
angle \; .$$

The Church encoding for words

Any natural number *n* can be encoded in the simply typed λ -calculus as

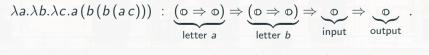
$$s: \mathfrak{o} \Rightarrow \mathfrak{o}, \ z: \mathfrak{o} \vdash \underbrace{s(\dots(sz))}_{n \text{ applications}}: \mathfrak{o}$$

A natural number is just a word over a one-letter alphabet.

For example, the word *abba* over the two-letter alphabet $\{a, b\}$

$$a: \mathfrak{o} \Rightarrow \mathfrak{o}, \ b: \mathfrak{o} \Rightarrow \mathfrak{o}, \ c: \mathfrak{o} \vdash a(b(b(ac))): \mathfrak{o}$$

is encoded as the closed λ -term



For any alphabet Σ , we define Church_{Σ} as $(\bullet \Rightarrow \bullet) \Rightarrow \ldots \Rightarrow (\bullet \Rightarrow \bullet) \Rightarrow \bullet \Rightarrow \bullet$.

Categorical interpretation

Let C be a cartesian closed category and Q be one of its objects.

For any simple type A built from o, we define the object $[A]_O$ by induction as

$$\llbracket \Phi \rrbracket_Q := Q$$
 and $\llbracket A \Rightarrow B \rrbracket_Q := \llbracket A \rrbracket_Q \Rightarrow \llbracket B \rrbracket_Q$.

Using the cartesian closed structure, one defines an interpretation function

$$\llbracket - \rrbracket_Q \quad : \quad \Lambda_{\beta\eta} \langle A \rangle \ \longrightarrow \ \mathsf{C}(1, \llbracket A \rrbracket_Q) \ .$$

In **FinSet** which is cartesian closed, given a finite set Q used to interpret Φ , every word w over the alphabet $\Sigma = \{a, b\}$, seen as a λ -term, is interpreted as a point

$$\llbracket w \rrbracket_Q \quad \in \quad (Q \Rightarrow Q) \Rightarrow (Q \Rightarrow Q) \Rightarrow Q \Rightarrow Q$$

which describes how the word will interact with a deterministic automaton.

Regular languages of λ -terms

The notion of regular language of λ -terms has been introduced by Salvati.

For any finite set Q and any subset $F \subseteq \llbracket A \rrbracket_Q$, we define the language

$$L_F$$
 := $\left\{ M \in \Lambda_{\beta\eta} \langle A \rangle \mid \llbracket M \rrbracket_Q \in F \right\}$.

All the languages recognized by Q assemble into a Boolean algebra

$$\operatorname{\mathsf{Reg}}_Q\langle A
angle := \{L_F \mid F \subseteq \llbracket A \rrbracket_Q\}$$

We can then make Q range over all finite sets, and we get the definition

$$\operatorname{Reg}\langle A \rangle := \bigcup_{Q} \operatorname{Reg}_{Q}\langle A \rangle .$$

Notice that $\operatorname{Reg}\langle A \rangle$ has no reason to be a Boolean algebra for the moment.

Salvati generalizes Kleene

The Church encoding induces an isomorphism of Boolean algebras

 $\mathsf{Reg}\langle\mathsf{Church}_{\Sigma}\rangle \quad\cong\quad \mathsf{Reg}\langle\Sigma\rangle \ .$

Indeed, every automaton (Q, δ, q_0, Acc) induces a subset

$$m{F} \quad := \quad ig\{ q \in \llbracket A
rbracket_Q \mid q(\delta, q_0) \in {\sf Acc} ig\}$$

On the other hand, every $q \in \llbracket A \rrbracket_Q$ induces a finite family of automata

 $(Q, \delta, q_0, \{q(\delta, q_0)\})$ for all $\delta: \Sigma imes Q o Q$ and $q_0 \in Q$

which determines the behavior of q, and from which one gets finite monoids.

A first observation using logical relations

If Q and Q' are two finite sets and $R \subseteq Q \times Q'$, for any simple type A we have $\llbracket A \rrbracket_R \subseteq \llbracket A \rrbracket_Q \times \llbracket A \rrbracket_{Q'}$ In particular, if $f : Q \rightarrow Q'$ is a partial surjection, then so is $\llbracket A \rrbracket_f : \llbracket A \rrbracket_Q \rightarrow \llbracket A \rrbracket_{Q'}$. Using the fundamental lemma of logical relations, one can deduce that

$$\text{if} \quad |Q| \ \geq \ |Q'| \ , \qquad \text{then} \quad \operatorname{Reg}_{Q'}\langle A \rangle \ \subseteq \ \operatorname{Reg}_Q\langle A \rangle \ .$$

This shows that the diagram

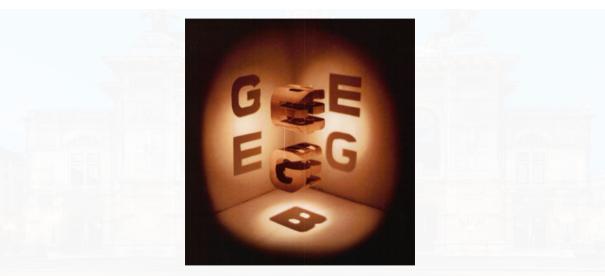
$$\Big(\operatorname{\mathsf{Reg}}_{Q'}\langle A \rangle \longrightarrow \operatorname{\mathsf{Reg}}_{Q}\langle A \rangle\Big)_{f:Q \twoheadrightarrow Q'}$$

is directed so we have

 $\operatorname{\mathsf{Reg}}\langle A
angle = \operatorname{\mathsf{colim}}_Q\operatorname{\mathsf{Reg}}_Q\langle A
angle$.

Entering the profinite world

An intuition about profinite words



D. Hofstadter's sculpture

An intuition about profinite words

D. Hofstadter's sculpture

The monoid of profinite words

A profinite word u is a family (u_p) of elements

 $u_p \in M$ where M ranges over all finite monoids $p: \Sigma \to M$ ranges over all functions

such that for every function $p: \Sigma \to M$ and homomorphism $\varphi: M \to N$, with M and N finite monoids, we have $u_{\varphi \circ p} = \varphi(u_p)$.

The monoid $\widehat{\Sigma^*}$ of profinite words contains Σ^* as a submonoid, since any word $w = w_1 \dots w_n$, where each $w_i \in \Sigma$, induces a profinite word with components

 $p(w_1) \dots p(w_n)$ for all $p: \Sigma \to M$.

For any finite monoid M there exists $n(M) \ge 1$ such that for all elements m of M, the element $m^{n(M)}$ is the idempotent power of m, which is unique.

Let *a* be any letter in Σ . The family of elements

$$u_p := p(a)^{n(M)}$$
 for all $p: \Sigma o M$

is an idempotent profinite word written a^{ω} which is not a finite word.

There is a more general construction: if u is a profinite word, then one can build another profinite word u^{ω} which is idempotent.

Duality: words

Stone spaces, i.e. compact and totally separated spaces, and continuous maps form a category **Stone**. Boolean algebras and their homomorphisms form a category **BA**. There is an equivalence of categories

Stone \cong **BA**^{op}

which associates to every Stone space its algebra of clopens and to every Boolean algebra its space of ultrafilters.

In particular, the monoid of profinite words $\widehat{\Sigma^*}$ has a natural topology such that

 $\widehat{\Sigma^*}$ is the Stone dual of $\operatorname{Reg}\langle\Sigma
angle$.

Duality: λ -terms

For any simple type A and finite set Q, we consider the subset

$$\llbracket A
rbrace_Q ::= \{ q \in \llbracket A
rbrace_Q \mid \exists M \in \Lambda_{eta\eta} \langle A
angle, q = \llbracket M
rbrace_Q \}$$

of definable elements of $\llbracket A \rrbracket_Q$.

The finite set of definable elements is related to regular languages as

$$\llbracket A \rrbracket_Q^{\bullet}$$
 is the Stone dual of $\operatorname{Reg}_Q \langle A \rangle$

and the inclusion $\operatorname{Reg}_{Q'}\langle A \rangle \hookrightarrow \operatorname{Reg}_Q\langle A \rangle$ induced by a partial surjection $f: Q \twoheadrightarrow Q'$ dualizes to the surjection $\llbracket A \rrbracket_f^{\bullet} : \llbracket A \rrbracket_Q^{\bullet} \to \llbracket A \rrbracket_{Q'}^{\bullet}$ which is the restriction of $\llbracket A \rrbracket_f$.

Definition of profinite λ -terms

By dualizing the diagram defining $\operatorname{Reg}\langle A\rangle$, we obtain a codirected diagram

$$\left(\llbracket A\rrbracket_{f}^{\bullet} : \llbracket A\rrbracket_{Q}^{\bullet} \longrightarrow \llbracket A\rrbracket_{Q'}^{\bullet}\right)_{f:Q \to Q'}$$

and we define $\widehat{\Lambda}_{\beta\eta}\langle A \rangle$ as its limit. As expected,

 $\widehat{\Lambda}_{\beta\eta}\langle A \rangle$ is the Stone dual of $\operatorname{Reg}\langle A \rangle$.

Concretely: a **profinite** λ -**term** θ of type A is a family of elements $\theta_Q \in [\![A]\!]_Q^{\bullet}$ s.t.

 $\llbracket A \rrbracket_{f}^{\bullet}(\theta_{Q}) = \theta_{Q'}$ for every partial surjection $f : Q \rightarrow Q'$.

The CCC of profinite λ -terms

Theorem. The profinite λ -terms assemble into a CCC **ProLam** such that

ProLam(A, B) := $\widehat{\Lambda}_{\beta\eta} \langle A \Rightarrow B \rangle$.

This means that we a compositional notion of profinite λ -calculus.

The interpretation of the simply typed λ -calculus into **ProLam** yields a functor

 $\mathsf{Lam} \ \longrightarrow \ \mathsf{ProLam}$

which sends a simply typed λ -term M of type A on the profinite λ -term

 $\llbracket M \rrbracket_Q$ where Q ranges over all finite sets.

This assignment is injective thanks to Statman's finite completeness theorem.

Profinite $\lambda\text{-terms}$ of Church type are profinite words

The Church encoding gives a bijection

 $\Lambda_{\beta\eta} \langle \operatorname{Church}_{\Sigma}
angle \ \cong \ \Sigma^* \; .$

This extends to the profinite setting. Indeed, profinite λ -terms of simple type Church_{Σ} are exactly profinite words as we have a homeomorphism

 $\widehat{\Lambda}_{\beta\eta} \langle \mathsf{Church}_{\Sigma}
angle \ \cong \ \widehat{\Sigma^*} \; .$

The profinite λ -term Ω

We consider the profinite λ -term Ω of type $(0 \Rightarrow 0) \Rightarrow 0 \Rightarrow 0$ such that

$$\Omega_Q \quad : \quad f \longmapsto \underbrace{f \circ \cdots \circ f}_{n \text{ times}}$$

where f^n is the idempotent power of the element f of the finite monoid $Q \Rightarrow Q$. Using Ω , for any Σ of cardinal n, one gets the profinite λ -term $\lambda u \lambda a_1 \dots \lambda a_n \Omega (u a_1 \dots a_n) \quad : \quad \text{Church}_{\Sigma} \Rightarrow \text{Church}_{\Sigma}$

which is the representation in the profinite λ -calculus of the operator

$$(-)^{\omega}$$
 : $\widehat{\Sigma^*} \longrightarrow \widehat{\Sigma^*}$

on profinite words.

Profinite λ -terms and Reynolds parametricity

Let A be a simple type. A **parametric family** θ is a family of elements $\theta_Q \in \llbracket A \rrbracket_Q$ s.t.

 $(heta_Q, heta_{Q'}) \in \llbracket A \rrbracket_R$ for all relations $R \subseteq Q \times Q'$.

Two differences with profinite λ -terms:

- the element θ_Q is not asked to be definable...
- ...but the family is parametric with respect to all relations.

A theorem and its partial converse

We first have a general theorem at every type.

Theorem. Every profinite λ -term is a parametric family.

This theorem admits the following converse at Church types.

Theorem. Every parametric family of type $Church_{\Sigma}$ is a profinite λ -term.

The proof of the converse uses the Yoneda terms, which generalize the constructors

 $\lambda s \lambda z.z$: Nat and $\lambda n \lambda s \lambda z.s(n s z)$: Nat \Rightarrow Nat

of the simple type $Nat := Church_1$ to any Church type.

Conclusion

Future work:

- generalize the notion of Yoneda term to any simple type;
- investigate a generalization of logic on words, which uses monadic second-order logic (MSO), to a logic on λ-terms.

Conclusion

Future work:

- generalize the notion of Yoneda term to any simple type;
- investigate a generalization of logic on words, which uses monadic second-order logic (MSO), to a logic on λ-terms.

Thank you for your attention!

Any questions?

Bibliography

- [Geh16] Mai Gehrke. "Stone duality, topological algebra, and recognition". In: Journal of Pure and Applied Algebra 220.7 (2016), pp. 2711–2747. ISSN: 0022-4049. DOI: https://doi.org/10.1016/j.jpaa.2015.12.007.
- [Mel17] Paul-André Melliès. "Higher-order parity automata". In: Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, 2017. 2017, pp. 1–12.
- [Pin] Jean-Eric Pin. "Profinite Methods in Automata Theory". In: 26th International Symposium on Theoretical Aspects of Computer Science STACS 2009. IBFI Schloss Dagstuhl. URL: https://hal.inria.fr/inria-00359677.
- [Sal09] Sylvain Salvati. "Recognizability in the Simply Typed Lambda-Calculus". In: 16th Workshop on Logic, Language, Information and Computation. Vol. 5514. Lecture Notes in Computer Science. Tokyo Japan: Springer, 2009, pp. 48–60.