
Profinite λ-terms and parametricity

Vincent Moreau, joint work with Paul-André Melliès and Sam van Gool

WG6 meeting, Wien

April the 25th, 2023

IRIF, Université Paris Cité, Inria Paris

Who am I?

PhD student since September 2021. This is joint work with my two advisors.

Paul-André Melliès Sam van Gool at IRIF, Paris

1/20

Context of the talk

Regular languages have a central place in theoretical computer science. Profinite

methods are well established for words using finite monoids.

Salvati proposed a notion of regular language of λ-terms using semantic tools.

Contribution: definition of profinite λ-terms using the CCC FinSet such that

profinite words are in bijection with profinite λ-terms

and living in harmony with Stone duality and the principles of Reynolds parametricity.

2/20

Languages

Regular languages of words

Let Σ be a finite alphabet, M be a finite monoid and p : Σ → M a set-theoretic

function. We write p̄ for the associated monoid homomorphism Σ∗ → M.

For each subset F ⊆ M, the set

LF := {w ∈ Σ∗ | p̄(w) ∈ F}

is a regular language. These sets assemble into the Boolean algebra

RegM⟨Σ⟩ := {LF : F ⊆ M} .

When M ranges over all finite monoids, we get in this way all regular languages:

Reg⟨Σ⟩ =
⋃
M

RegM⟨Σ⟩ .

3/20

The Church encoding for words

Any natural number n can be encoded in the simply typed λ-calculus as

s : o ⇒ o, z : o ⊢ s (. . . (s z))︸ ︷︷ ︸
n applications

: o .

A natural number is just a word over a one-letter alphabet.

For example, the word abba over the two-letter alphabet {a, b}

a : o ⇒ o, b : o ⇒ o, c : o ⊢ a (b (b (a c))) : o .

is encoded as the closed λ-term

λa.λb.λc .a (b (b (a c))) : (o ⇒ o)︸ ︷︷ ︸
letter a

⇒ (o ⇒ o)︸ ︷︷ ︸
letter b

⇒ o︸︷︷︸
input

⇒ o︸︷︷︸
output

.

For any alphabet Σ, we define ChurchΣ as (o ⇒ o) ⇒ . . . ⇒ (o ⇒ o)︸ ︷︷ ︸
|Σ| times

⇒ o ⇒ o.

4/20

Categorical interpretation

Let C be a cartesian closed category and Q be one of its objects.

For any simple type A built from o, we define the object JAKQ by induction as

JoKQ := Q and JA ⇒ BKQ := JAKQ ⇒ JBKQ .

Using the cartesian closed structure, one defines an interpretation function

J−KQ : Λβη⟨A⟩ −→ C(1, JAKQ) .

In FinSet which is cartesian closed, given a finite set Q used to interpret o, every

word w over the alphabet Σ = {a, b}, seen as a λ-term, is interpreted as a point

JwKQ ∈ (Q ⇒ Q) ⇒ (Q ⇒ Q) ⇒ Q ⇒ Q

which describes how the word will interact with a deterministic automaton.

5/20

Regular languages of λ-terms

The notion of regular language of λ-terms has been introduced by Salvati.

For any finite set Q and any subset F ⊆ JAKQ , we define the language

LF :=
{
M ∈ Λβη⟨A⟩ | JMKQ ∈ F

}
.

All the languages recognized by Q assemble into a Boolean algebra

RegQ⟨A⟩ :=
{
LF | F ⊆ JAKQ

}
.

We can then make Q range over all finite sets, and we get the definition

Reg⟨A⟩ :=
⋃
Q

RegQ⟨A⟩ .

Notice that Reg⟨A⟩ has no reason to be a Boolean algebra for the moment.

6/20

Salvati generalizes Kleene

The Church encoding induces an isomorphism of Boolean algebras

Reg⟨ChurchΣ⟩ ∼= Reg⟨Σ⟩ .

Indeed, every automaton (Q, δ, q0,Acc) induces a subset

F :=
{
q ∈ JAKQ | q(δ, q0) ∈ Acc

}
On the other hand, every q ∈ JAKQ induces a finite family of automata

(Q, δ, q0, {q(δ, q0)}) for all δ : Σ× Q → Q and q0 ∈ Q

which determines the behavior of q, and from which one gets finite monoids.

7/20

A first observation using logical relations

If Q and Q ′ are two finite sets and R ⊆ Q × Q ′, for any simple type A we have

JAKR ⊆ JAKQ × JAKQ′

In particular, if f : Q ↠ Q ′ is a partial surjection, then so is JAKf : JAKQ ↠ JAKQ′ .

Using the fundamental lemma of logical relations, one can deduce that

if |Q| ≥ |Q ′| , then RegQ′⟨A⟩ ⊆ RegQ⟨A⟩ .

This shows that the diagram(
RegQ′⟨A⟩ RegQ⟨A⟩

)
f :Q↠Q′

is directed so we have

Reg⟨A⟩ = colimQ RegQ⟨A⟩ .
8/20

Entering the profinite world

An intuition about profinite words

D. Hofstadter’s sculpture
9/20

An intuition about profinite words

D. Hofstadter’s sculpture
9/20

The monoid of profinite words

A profinite word u is a family (up) of elements

up ∈ M where
M ranges over all finite monoids

p : Σ → M ranges over all functions

such that for every function p : Σ → M and homomorphism φ : M → N, with M

and N finite monoids, we have uφ◦p = φ(up).

The monoid Σ̂∗ of profinite words contains Σ∗ as a submonoid, since any word

w = w1 . . .wn, where each wi ∈ Σ, induces a profinite word with components

p(w1) . . . p(wn) for all p : Σ → M.

10/20

A profinite word which is not a word

For any finite monoid M there exists n(M) ≥ 1 such that for all elements m of M, the

element mn(M) is the idempotent power of m, which is unique.

Let a be any letter in Σ. The family of elements

up := p(a)n(M) for all p : Σ → M

is an idempotent profinite word written aω which is not a finite word.

There is a more general construction: if u is a profinite word, then one can build

another profinite word uω which is idempotent.

11/20

Duality: words

Stone spaces, i.e. compact and totally separated spaces, and continuous maps form a

category Stone. Boolean algebras and their homomorphisms form a category BA.

There is an equivalence of categories

Stone ∼= BAop

which associates to every Stone space its algebra of clopens and to every Boolean

algebra its space of ultrafilters.

In particular, the monoid of profinite words Σ̂∗ has a natural topology such that

Σ̂∗ is the Stone dual of Reg⟨Σ⟩ .

12/20

Duality: λ-terms

For any simple type A and finite set Q, we consider the subset

JAK•Q :=
{
q ∈ JAKQ | ∃M ∈ Λβη⟨A⟩, q = JMKQ

}
of definable elements of JAKQ .

The finite set of definable elements is related to regular languages as

JAK•Q is the Stone dual of RegQ⟨A⟩

and the inclusion RegQ′⟨A⟩ ↪→ RegQ⟨A⟩ induced by a partial surjection f : Q ↠ Q ′

dualizes to the surjection JAK•f : JAK•Q → JAK•Q′ which is the restriction of JAKf .

13/20

Definition of profinite λ-terms

By dualizing the diagram defining Reg⟨A⟩, we obtain a codirected diagram(
JAK•f : JAK•Q JAK•Q′

)
f :Q↠Q′

and we define Λ̂βη⟨A⟩ as its limit. As expected,

Λ̂βη⟨A⟩ is the Stone dual of Reg⟨A⟩ .

Concretely: a profinite λ-term θ of type A is a family of elements θQ ∈ JAK•Q s.t.

JAK•f (θQ) = θQ′ for every partial surjection f : Q ↠ Q ′.

14/20

The CCC of profinite λ-terms

Theorem. The profinite λ-terms assemble into a CCC ProLam such that

ProLam(A,B) := Λ̂βη⟨A ⇒ B⟩ .

This means that we a compositional notion of profinite λ-calculus.

The interpretation of the simply typed λ-calculus into ProLam yields a functor

Lam −→ ProLam

which sends a simply typed λ-term M of type A on the profinite λ-term

JMKQ where Q ranges over all finite sets.

This assignment is injective thanks to Statman’s finite completeness theorem.

15/20

Profinite λ-terms of Church type are profinite words

The Church encoding gives a bijection

Λβη⟨ChurchΣ⟩ ∼= Σ∗ .

This extends to the profinite setting. Indeed, profinite λ-terms of simple type ChurchΣ

are exactly profinite words as we have a homeomorphism

Λ̂βη⟨ChurchΣ⟩ ∼= Σ̂∗ .

16/20

The profinite λ-term Ω

We consider the profinite λ-term Ω of type (o ⇒ o) ⇒ o ⇒ o such that

ΩQ : f 7−→ f ◦ · · · ◦ f︸ ︷︷ ︸
n times

where f n is the idempotent power of the element f of the finite monoid Q ⇒ Q.

Using Ω, for any Σ of cardinal n, one gets the profinite λ-term

λuλa1 . . . λan.Ω (u a1 . . . an) : ChurchΣ ⇒ ChurchΣ

which is the representation in the profinite λ-calculus of the operator

(−)ω : Σ̂∗ −→ Σ̂∗

on profinite words.

17/20

Profinite λ-terms and Reynolds

parametricity

Parametric families

Let A be a simple type. A parametric family θ is a family of elements θQ ∈ JAKQ s.t.

(θQ , θQ′) ∈ JAKR for all relations R ⊆ Q × Q ′.

Two differences with profinite λ-terms:

• the element θQ is not asked to be definable...

• ...but the family is parametric with respect to all relations.

18/20

A theorem and its partial converse

We first have a general theorem at every type.

Theorem. Every profinite λ-term is a parametric family.

This theorem admits the following converse at Church types.

Theorem. Every parametric family of type ChurchΣ is a profinite λ-term.

The proof of the converse uses the Yoneda terms, which generalize the constructors

λsλz .z : Nat and λnλsλz .s (n s z) : Nat ⇒ Nat

of the simple type Nat := Church1 to any Church type.

19/20

Conclusion

Future work:

• generalize the notion of Yoneda term to any simple type;

• investigate a generalization of logic on words, which uses monadic second-order

logic (MSO), to a logic on λ-terms.

Thank you for your attention!

Any questions?

20/20

Conclusion

Future work:

• generalize the notion of Yoneda term to any simple type;

• investigate a generalization of logic on words, which uses monadic second-order

logic (MSO), to a logic on λ-terms.

Thank you for your attention!

Any questions?

20/20

Bibliography

[Geh16] Mai Gehrke. “Stone duality, topological algebra, and recognition”. In:

Journal of Pure and Applied Algebra 220.7 (2016), pp. 2711–2747. issn: 0022-4049.

doi: https://doi.org/10.1016/j.jpaa.2015.12.007.

[Mel17] Paul-André Melliès. “Higher-order parity automata”. In: Proceedings of the

32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017,

Reykjavik, Iceland, 2017. 2017, pp. 1–12.

[Pin] Jean-Eric Pin. “Profinite Methods in Automata Theory”. In: 26th

International Symposium on Theoretical Aspects of Computer Science STACS 2009.

IBFI Schloss Dagstuhl. url: https://hal.inria.fr/inria-00359677.

[Sal09] Sylvain Salvati. “Recognizability in the Simply Typed

Lambda-Calculus”. In: 16th Workshop on Logic, Language, Information and

Computation. Vol. 5514. Lecture Notes in Computer Science. Tokyo Japan:

Springer, 2009, pp. 48–60.

https://doi.org/https://doi.org/10.1016/j.jpaa.2015.12.007
https://hal.inria.fr/inria-00359677

	Languages
	Entering the profinite world
	Profinite -terms and Reynolds parametricity
	Appendix

