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Homotopy Type Theory and Univalent Foundations

Aims to provide a practical foundations for computer
formalization of mathematics

Builds on deep connections between type theory,
homotopy theory and (higher) category theory

HoTT/UF = MLTT + Univalence + Higher Inductive Types

Homotopy
Type Theory
Univalent Foundations of Mathematics

THE UNIVALENT FOUNDATIONS PROGRAM

INSTITUTE FOR ADVANCED STUDY
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Higher Inductive Types (HITs)

Datatypes generated by regular “point” constructors and (higher) path constructors:

base•

loop

S1
north•

. . .

Susp(S1)
merid x

•
south

Higher spheres can either be defined by Sn := Susp(Sn−1) or directly (for fixed n)
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Synthetic algebraic topology

By representing spaces as types we can develop algebraic topology synthetically in HoTT/UF

Both homotopy and cohomology groups of types can be characterized using univalence

This is well-suited for computer formalization and leads to very compact and elegant proofs

Problem: as univalence is added axiomatically to HoTT/UF we cannot compute with these results
in proof assistants...
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The Cubical paradigm in HoTT/UF

Theorem (Bezem-Coquand-Huber, 2013)
Univalent Type Theory has a constructive model in substructural Kan cubical sets (“BCH model”).

This led to development of a variety of structural cubical set models and cubical type theories:

Theorem (Cohen-Coquand-Huber-M., 2015)
Univalent Type Theory has a constructive model in De Morgan Kan cubical sets (“CCHM model”).

In cubical type theory we have a univalence theorem with computational content:

ua : (A B : U) → (PathU A B) ≃ (A ≃ B)

A. Mörtberg Computational Proofs in Cubical Type Theories April 25, 2023 6 / 46



Cubical proof assistants

There are by now a variety of different cubical type theories with native support for univalence
and HITs, satisfying good metatheoretic properties (canonicity, normalization, decidable
typechecking...)

There are also many cubical proof assistants: cubical, cubicaltt, yacctt, RedPRL, redtt,
cooltt, Cubical Agda...

In Cubical Agda we have explored how to do synthetic proofs computationally, in particular by
computing a Brunerie number
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Synthetic homotopy theory

In HoTT we define the nth homotopy group of a pointed type X by:

𝜋n(X ) = ∥Sn →★ X ∥0

These groups constitute a topological invariant, making them a powerful tool for establishing
whether two given spaces are homotopy equivalent

𝜋0(X ) characterizes the connected components of X

𝜋1(X ) characterizes equivalence classes the loops in X up to homotopy

𝜋n(X ), for n > 1, characterizes of n-dimensional loops up to homotopy

A. Mörtberg Computational Proofs in Cubical Type Theories April 25, 2023 9 / 46



Synthetic homotopy theory

In HoTT we define the nth homotopy group of a pointed type X by:

𝜋n(X ) = ∥Sn →★ X ∥0

These groups constitute a topological invariant, making them a powerful tool for establishing
whether two given spaces are homotopy equivalent

𝜋0(X ) characterizes the connected components of X

𝜋1(X ) characterizes equivalence classes the loops in X up to homotopy

𝜋n(X ), for n > 1, characterizes of n-dimensional loops up to homotopy

A. Mörtberg Computational Proofs in Cubical Type Theories April 25, 2023 9 / 46



Synthetic homotopy theory

Using univalence we can prove properties of 𝜋n(X ) for concrete spaces X represented using HITs

Example: 𝜋1(S1) ≃ Z can be proved using the encode-decode method (Licata-Shulman ’13)

Many other standard results allowing us to characterize homotopy groups of spheres can be
found in the HoTT book: the Hopf fibration, Freudenthal suspension theorem, long exact
sequence of homotopy groups, connectivity of spheres, ...
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Homotopy groups of spheres synthetically

However, for many spaces, these groups tend to become increasingly esoteric and difficult to
compute for large n

𝜋1 𝜋2 𝜋3 𝜋4 𝜋5 𝜋6 𝜋7 𝜋8 𝜋9 𝜋10

S1 Z 0 0 0 0 0 0 0 0 0

S2 0 Z Z Z2 Z2 Z12 Z2 Z2 Z3 Z15

S3 0 0 Z Z2 Z2 Z12 Z2 Z2 Z3 Z15

S4 0 0 0 Z Z2 Z2 Z × Z12 Z2 × Z2 Z2 × Z2 Z24 × Z3
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The fourth homotopy group of the 3-sphere in HoTT

Guillaume Brunerie’s PhD thesis contains a synthetic proof in Book HoTT of:

Theorem (Brunerie, 2016)

The fourth homotopy group of the 3-sphere is Z/2Z, that is, 𝜋4(S3) ≃ Z/2Z

The proof is one of the most impressive pieces of synthetic homotopy theory to date and uses lots
of advanced classical machinery developed synthetically in HoTT: symmetric monoidal structure of
smash products, (integral) cohomology rings, the Mayer-Vietoris and Gysin sequences, Hopf invariant
homomorphism, Whitehead products, the iterated Hopf construction, Blakers-Massey, ...

Furthermore, the proof is fully constructive!
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The Brunerie number

The theorem can hence be phrased as: “there exists a number 𝛽 : Z such that 𝜋4(S3) ≃ Z/𝛽Z”

In fact Appendix B of Brunerie’s thesis contains a complete and concise definition of 𝛽 as the
image of 1 under a sequence of 12 maps:

Z Ω(S1) Ω2(S2) Ω3(S3)

Ω3(S1 ∗ S1) Ω3(S2) Ω3(S1 ∗ S1) Ω3(S3)

Ω2∥S2∥2 Ω∥Ω(S2)∥1 ∥Ω2(S2)∥0 Ω(S1) Z
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The Brunerie number

On page 85 Brunerie says (for n := |𝛽 |):

This result is quite remarkable in that even though it is a constructive proof, it is not at all
obvious how to actually compute this n. At the time of writing, we still haven’t managed to
extract its value from its definition. A complete and concise definition of this number n is
presented in appendix B, for the benefit of someone wanting to implement it in a prospective
proof assistant. In the rest of this thesis, we give a mathematical proof in homotopy type
theory that n = 2.

As the above cubical systems satisfy canonicity it should in principle be possible to use them to
compute the Brunerie number...

But this turned out to be a lot harder than expected!
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Computing the Brunerie number, a (probably incomplete) history

2013: Guillaume presents informal definition of the Brunerie number at an IAS seminar

December 2014: Guillaume visits Chalmers and tries to compute it with Thierry Coquand
and Simon Huber using cubical (based on BCH model)

Spring 2015: I join forces with them and spend a lot of time trying to benchmark and
optimize the Haskell implementation of cubical

2016: Guillaume finishes thesis with definition in Appendix B (based on cubical code)

Spring/summer 2017: I port the proof to cubicaltt (based on CCHM), but computation runs
out of memory (on Inria server with 64GB RAM)

June 2017: another attempt in cubicaltt with the MRC group in Snowbird (Vikraman
Choudhury, Paul Gustafson, Dan Licata, Ian Orton, and Jon Sterling). Optimizes the
definition of the number, without luck

Late 2017: I visit Guillaume repeatedly at the IAS and simplify the definition a lot,
computation goes slightly further but still runs out of memory
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Computing the Brunerie number, a (probably incomplete) history

2018: various attempts to run parts of the computation in various cartesian cubical systems
(yacctt and redtt) as well as in Cubical Agda, no luck

June 2018: Favonia tries running the cubicaltt computation on a super computer with 1TB
of ram, computation terminated after ∼ 90 hours
Summer 2018: Dagstuhl meeting where the cubical group (Jon Sterling, Carlo Angiuli,
Favonia, Dan Licata, Simon Huber, Ian Orton, Guillaume Brunerie) found various new
optimizations to cubical evaluation (“Dagstuhl lemma”), did not help with computation

2019: Evan Cavallo ports the definition to Cubical Agda, still running out of memory despite
more optimizations (including Cubical Agda “ghcomp” trick of Andrea Vezzosi)

2020-2021: No progress. I was convinced that the only way to make progress was to improve
closed term evaluation for cubical type theories...

2022: Breakthrough with Axel Ljungström... A variation on the Brunerie number normalizes
to −2 in just a few seconds in Cubical Agda!
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Formalizing 𝜋4(S3) � Z/2Z and Computing a Brunerie Number in Cubical Agda

We have a write-up on the arxiv: https://arxiv.org/abs/2302.00151

This was recently accepted to LICS’23 and the paper contains 3 fully formalized proofs:

1 Streamlined and complete version of Brunerie’s original proof
2 Axel’s new proof
3 The computational proof relying on normalization

Proofs 1 and 2 work in Book HoTT, proof 3 relies on cubical normalization

Let’s look at what went into this...
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Brunerie’s theorem: part 1 (chapters 1–3)

In the first half of the thesis (chapters 1–3) Guillaume constructs a map g : S3 → S2

g is defined as the composition of a sequence of (pointed) maps S3 → S1 ∗ S1 → S2 ∨ S2 → S2

Let e : 𝜋3(S2) ≃ Z and define 𝛽 := e( | g |0), the first main theorem is then that:

Theorem (Brunerie, Corollary 3.4.5)

We have 𝜋4(S3) ≃ Z/𝛽Z
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Brunerie’s proof: part 1 (chapters 1–3)

The proof of this theorem uses:

Hopf fibration

LES of homotopy groups of a fibration

Freudenthal suspension theorem

James construction1

The Blakers-Massey theorem

Whitehead products

This is quite complicated synthetic HoTT, but all of it was formalizable and the proofs didn’t
contain any major surprises (except for a typo in the definition of Whitehead products)

1General form actually not needed, can do a direct encode-decode proof instead.
A. Mörtberg Computational Proofs in Cubical Type Theories April 25, 2023 20 / 46



Brunerie’s proof: part 2 (chapters 4–6)

The second half of the thesis is devoted to proving that |𝛽 | = 2 and this a lot more complicated
than the first half. It uses the following classical theory:

Symmetric monoidal structure of smash products

This gives graded ring structure of the cup product ⌣ : H i (X ) → H j (X ) → H i+j (X )
The Mayer-Vietoris sequence:

The Gysin sequence:

The Hopf Invariant homomorphism:

The Iterated Hopf Construction:
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Brunerie’s proof part 2
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New proof

Having finished the formalization of chapters 4–6 Axel realized that one can actually simplify the
proof a lot and completely avoid the second half of Brunerie’s thesis

The new proof is very elementary – doesn’t use any complicated theory!

Idea: trace the maps by hand using clever tricks and choices
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Sketch of new proof

Recall that 𝛽 := e( |g |0) for e : 𝜋3(S2) ≃ Z and g : S3 → S2. The goal is to show that |𝛽 | = 2

In fact, g is defined as the precomposition of a not very complicated map S1 ∗ S1 → S2 with the
somewhat complicated equivalence f : S3 ≃ S1 ∗ S1

One of Axel’s tricks in the proof is to define 𝜋∗
3 (A) := | |S1 ∗ S1 →∗ A| |0 and work with it instead

so that f can be avoided
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Sketch of new proof

We can now decompose e : 𝜋3(S2) ≃ Z as:

𝜋3(S2)
e1≃ 𝜋∗

3 (S2)
e2≃ 𝜋∗

3 (S1 ∗ S1)
e3≃ 𝜋∗

3 (S3)
e4≃ Z

We can also give explicit definitions of

g1 : S1 ∗ S1 → S2 g2 : S1 ∗ S1 → S1 ∗ S1 g3 : S1 ∗ S1 → S3

such that

e1( |g |0) = |g1 |0 e2( |g1 |0) = |g2 |0 e3( |g2 |0) = |g3 |0 e4( |g3 |0) = −2

The first 3 equalities are not definitional and requires some clever choices, but (surprisingly) the
last one holds by refl in Cubical Agda!
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The three formalized proofs

We have three fully formalized synthetic proofs that 𝜋4(S3) ≃ Z/2Z:

1 Streamlined and complete proof following Guillaume’s thesis (17000 LOC)
2 Axel’s new direct elementary proof which avoids part 2 of the thesis completely (600 LOC)
3 The new computational proof by normalizing one of these Brunerie numbers (400 LOC)

Common part to all proofs (Brunerie Chapters 1-3): 9000 LOC

The first two proofs are expressable in Book HoTT, while the third crucially relies on normalization
of terms involving univalence and HITs (so expressable in cubical systems, and maybe H.O.T.T.)
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Outline

1 Introduction

2 Proofs by computation in synthetic homotopy theory

3 Proofs by computation in synthetic cohomology theory

4 Relating cubical type theories

5 Conclusions and future work
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Synthetic cohomology theory

In HoTT we can define cohomology as:2

Hn(X ,G) = ∥X → K (G, n)∥0

In Synthetic Integral Cohomology in Cubical Agda (Brunerie-Ljungström-M., CSL’22) we equip
Hn(X ,Z) with a very concrete group structure that computes quite well

We also compute cohomology groups for many classical spaces: spheres, torus, Klein bottle, wedge
sums, real and complex projective planes

Many of these proofs are direct by analyzing function spaces, but some require more elaborate
classical techniques (Eilenberg-Steenrod axioms, Mayer-Vietoris sequence)

2Buchholtz, Brunerie, Cavallo, Favonia, Finster, Licata, Shulman, van Doorn, ...
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Side remark: relationship to homotopy groups of spheres

Integral cohomology gives a nice map 𝜋n(Sn) → Z. Note the similarity in:

𝜋n(Sn) = ∥Sn →★ S
n∥0

Hn(Sn,Z) = ∥Sn → ∥Sn∥n∥0

This is used in the new Brunerie number computation: it is quite straightforward to prove that
H 3(S3,Z) ≃ Z and the left-to-right map has better computational behavior than the one in
𝜋3(S3) ≃ Z obtained by iterated Freudenthal suspension theorem
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Computations in proofs of cohomology groups

Proofs by computation also pop up in synthetic cohomology theory:

Base cases when verifying the group laws for Hn(X ,Z) involve path algebra in loop spaces
over the spheres which can typically be reduced to integer computations

When showing that Hn(X ,G) or 𝜋n(X ) is generated by a particular element e we can use
that the group is equivalent to some nice group G (e.g. Z) and check that e is mapped to a
generator of G (e.g. ±1))
Various computations involving the group operations

Some of these are fast, some are slow, and some do not terminate in a reasonable amount of time
(minutes on a normal laptop)
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Cohomology benchmarks

For every equivalence 𝜙 : Hn(X ,Z) ≃ G that we have formalized, two benchmarks have been run
in Cubical Agda:

Test 1: can 𝜙 (𝜙 -1(g)) ≡ g be proved by refl for different values of g : G?

Test 2 can 𝜙 (𝜙 -1(g1) +H 𝜙 -1(g2)) ≡ g1 +G g2 be proved by refl for g1, g2 : G?
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Cohomology benchmarks

Type A Cohomology Group G Test 1 Test 2

S1 H1 Z ✓ ✓

S2 H2 Z ✓ ✓

S3 H3 Z ✓ ✗

S4 H4 Z ✗ ✗

T 2
H1 Z × Z ✓ ✓

H2 Z ✓ ✓

S2 ∨S1 ∨S1 H1 Z × Z ✓ ✓

H2 Z ✓ ✓

K 2 H1 Z ✓ ✓

H2 Z/2Z ✗ ✗

RP2 H2 Z/2Z ✗ ✗

CP2
H2 Z ✓ ✓

H4 Z ✗ ✗
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Cup product and cohomology ring

Cohomology allows us to distinguish many spaces, but it is sometimes a bit too coarse. We can
equip cohomology groups also with a graded multiplication operations

⌣ : Hn(X ) → Hm(X ) → Hn+m(X )

This can be organized into a graded commutative ring H ∗(X )

These rings are often equivalent to quotients of multivariate polynomial rings and we computed
some of these in:

Computing Cohomology Rings in Cubical Agda (Lamiaux-Ljungström-M., CPP 2023)

Application: S2 ∨S1 ∨S1 has the same cohomology groups as T 2, but they are not equivalent as
the cohomology rings differ
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Computing with the cohomology ring

To distinguish S2 ∨S1 ∨S1 and T 2 we define a predicate P : Type → Type:

P (A) := (x y : H 1(A)) → x ⌣ y ≡ 0h

We have the isomorphisms:

f1 : H 1(T 2) � Z × Z

f2 : H 2(T 2) � Z
g1 : H 1(S2 ∨S1 ∨S1) � Z × Z

g2 : H 2(S2 ∨S1 ∨S1) � Z

We will now disprove P (T 2) and prove P (S2 ∨S1 ∨S1), which establishes that they are not
equivalent
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Computing with the cohomology ring

To disprove P (T 2) we need x, y : H 1(T 2) such that x ⌣ y . 0h.

Let

x = f −11 (0, 1) y = f −11 (1, 0)

Now f2(x ⌣ y) ≡ 1 holds by refl and thus x ⌣ y . 0h

To prove P (S2 ∨S1 ∨S1) we let x, y : H 1(S2 ∨S1 ∨S1). We have that
g2(g−11 (g1 x) ⌣ g−11 (g1 y)) ≡ 0, again by refl (modulo truncation elimination). Thus
g−11 (g1 x) ⌣ g−11 (g1 y) ≡ x ⌣ y ≡ 0h.

So P (T 2) holds while P (S2 ∨S1 ∨S1) doesn’t, so these types are not equivalent
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Further computations with cohomology rings

For a more ambitious computation involving⌣ consider Chapter 6 of Guillaume Brunerie’s PhD
thesis. This chapter is devoted to proving that the generator e : H 2(CP2) when multiplied with
itself yields a generator of H 4(CP2)

Let g : Z→ Z be the map given by composing:

Z
�−−→ H 2(CP2) 𝜆 x→x ⌣ x−−−−−−−−→ H 4(CP2) �−−→ Z

The number g(1) should reduce to ±1 for e ⌣ e to generate H 4(CP2) and by evaluating it in
Cubical Agda we should be able to reduce the whole chapter to a single computation... However,
Cubical Agda is currently stuck on computing g(1)

So this is yet another Brunerie number
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Computations with cohomology rings

Thomas Lamiaux’s talk at the HoTT/UF workshop contained some more examples where it would
be nice if things computed faster for characterizing H ∗(X , R) as quotients of polynomial rings

For example, to show that H ∗(K,Z) � Z[X , Y ]/(X 2,XY , 2Y , Y 2) some computations are involved
to show that the map f : Z[X , Y ] → H ∗(K,Z) is zero on the generators of the ideal that we
quotient by

This gives even more examples of computations that are fast, slow, and some that don’t terminate
in a reasonable amount of time
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Synthetic computations in homotopy and cohomology theory

Some reflections on the above proofs by computation:

Why does only the new Brunerie number e4( |g3 |0) terminate? What about the other Brunerie
numbers (especially Brunerie’s original definition without optimizations)?

Many computations are not very stable, composition with refl in certain places can make it
run seemingly forever... Why?!

Is it possible to get more computations to terminate in reasonable time? Maybe in other
cubical type theories or faster implementations (taking closed term evaluation seriously)?

What do the proofs actually tell us?
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Cubical set models of HoTT/UF

Ideally these cubical proofs should be interpretable in spaces (Kan complexes), or in a suitably
structured∞-topos

Unfortunately the model structure induced by the standard model of CCHM cubical type theory
(on which Cubical Agda is based) is notQuillen equivalent to spaces

Luckily, there at least is the equivariant cartesian cubical model which is equivalent to spaces
(Awodey-Cavallo-Coquand-Riehl-Sattler)

More recently Cavallo and Sattler has proved that cartesian cubical sets with one connection is
also equivalent to space: https://arxiv.org/abs/2211.14801
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The many cubical models and type theories
Structural I operations Kan operations Diag. cofib.

BCH 0 → r , 1 → r
CCHM ✓ ∧, ∨, ¬ (DM alg.) 0 → 1

“Dedekind” ✓ ∧, ∨ (dist. lattice) 0 → 1, 1 → 0
Orton-Pitts ✓ ∧, ∨ (conn. alg.) 0 → 1, 1 → 0

Cartesian (AFH, ABCFHL) ✓ r → s ✓
Cavallo-Sattler ✓ ∨ 0 → r , 1 → r ✓

Equivariant (ACCRS) ✓ ®r → ®s ✓

The cartesian cubical model can be interpreted into Cavallo-Sattler model or the equivariant
model, and hence any proof in cartesian cubical model has meaning in spaces

How do the other cubical type theories and models relate? Can we translate between them?

Comparison and unification of the Kan operations: Unifying Cubical Models of Univalent Type
Theory (Cavallo-M.-Swan CSL’20)
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Cubical set models of HoTT/UF

Translating the various definitions used in the computations to other cubical type theories should
be easy, but translating the proofs is much harder...

Dream: Cubical Agda is conservative over cartesian cubical type theory

Seems very hard to prove, but it would mean that we do not have to change and redo all proofs in
Cubical Agda if we want them to be interpretable into spaces

Work in progress with Cavallo and Di Liberti: is cartesian cubical type theory wih one connection
conservative over cartesian cubical type theory?
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Future work

Can we make implementations of cubical type theory faster and compute more things?

How do the many cubical type theories relate? Are some conservative over others?

Can we get faster cohomology computations using synthetic cellular cohomology following
Buchholtz-Favonia? Should allow us to reduce computations to linear algebra!

Formalize more classical computational tools from algebraic topology (e.g. spectral sequences
following van Doorn PhD)

Very ambitious: Serre finiteness theorem for homotopy groups of spheres (following
Barton-Campion’s synthetic proof). Gives that homotopy groups of spheres are finitely
presented. Can we effectively compute these presentations?
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Thank you for your attention!

Questions?
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