Every Modality is a Relative Right Adjoint

Andreas Nuyts ${ }^{1}$ and Josselin Poiret ${ }^{2}$
${ }^{1}$ KU Leuven, Belgium
${ }^{2}$ ENS de Lyon, France
EuroProofNet WG6 Meeting
Vienna, Austria
April 24, 2023

Let $R: \mathscr{C} \rightarrow \mathscr{D}$ be a functor.
$\frac{\Gamma \operatorname{ctx} @ \mathscr{C}}{R \Gamma \operatorname{ctx} @ \mathscr{D}} \quad \frac{\tau: \Gamma \rightarrow \Gamma^{\prime} @ \mathscr{C}}{R \tau: R \Gamma \rightarrow R \Gamma^{\prime} @ \mathscr{D}} \quad \frac{\Gamma \vdash T \text { type }}{R \Gamma \vdash R T \text { type }} \quad \frac{\Gamma \vdash t: T Q}{R \Gamma \vdash R t: R T @}$

Ok, so how do we check

$\Delta \vdash R T$ type

We check $\Gamma \vdash T$ type and substitute with $\sigma: \wedge \rightarrow R \Gamma$
 BUT: Don't bother the user. Synthesize Γ and σ.
 $\Gamma \in \mathscr{C}$ should be the universal context Γ such that $\sigma: \Delta \rightarrow R \Gamma$ exists. I.e. if $\sigma^{\prime}: \Delta \rightarrow R \Gamma^{\prime}$ then we should have $\Gamma \rightarrow \Gamma^{\prime}$.

+ some sensible laws $\sim L \dashv R$.

Let $R: \mathscr{C} \rightarrow \mathscr{D}$ be a CwF morphism.
$\frac{\Gamma \operatorname{ctx} @ \mathscr{C}}{R \Gamma \operatorname{ctx} @ \mathscr{D}} \quad \frac{\tau: \Gamma \rightarrow \Gamma^{\prime} @ \mathscr{C}}{R \tau: R \Gamma \rightarrow R \Gamma^{\prime} @ \mathscr{D}} \quad \frac{\Gamma \vdash T \text { type } @ \mathscr{C}}{R \Gamma \vdash R T \text { type } @ \mathscr{D}} \quad \frac{\Gamma \vdash t: T @ \mathscr{C}}{R \Gamma \vdash R t: R T @ \mathscr{D}}$

Ok, so how do we check

We check $\Gamma \vdash T$ type
 and substitute with $\sigma: \wedge \rightarrow P \Gamma$

BUT: Don't bother the user. Synthesize Γ and σ
$\Gamma \in \mathscr{C}$ should be the universal context Γ such that $\sigma: \Delta \rightarrow R \Gamma$ exists. I.e. if $\sigma^{\prime}: \Delta \rightarrow R \Gamma^{\prime}$ then we should have $\Gamma \rightarrow \Gamma^{\prime}$.

+ some sensible laws

Let $R: \mathscr{C} \rightarrow \mathscr{D}$ be a CwF morphism.
$\frac{\Gamma \operatorname{ctx} @ \mathscr{C}}{R \Gamma \operatorname{ctx} @ \mathscr{D}} \quad \frac{\tau: \Gamma \rightarrow \Gamma^{\prime} @ \mathscr{C}}{R \tau: R \Gamma \rightarrow R \Gamma^{\prime} @ \mathscr{D}} \quad \frac{\Gamma \vdash T \text { type } @ \mathscr{C}}{R \Gamma \vdash R T \text { type } @ \mathscr{D}} \quad \frac{\Gamma \vdash t: T @ \mathscr{C}}{R \Gamma \vdash R t: R T @ \mathscr{D}}$

Ok, so how do we check

$$
\begin{aligned}
& ? \\
& \Delta \vdash R T \text { type }
\end{aligned}
$$

We check $\Gamma \vdash T$ type © 8 and substitute with σ BUT: Don't bother the user. Synthesize Γ and σ
 $\Gamma \in \mathscr{C}$ should be the universal context Γ such that $\sigma: \Delta \rightarrow R \Gamma$ exists. I.e. if $\sigma^{\prime}: \Delta \rightarrow R \Gamma^{\prime}$ then we should have $\Gamma \rightarrow \Gamma^{\prime}$.

Let $R: \mathscr{C} \rightarrow \mathscr{D}$ be a CwF morphism.
$\frac{\Gamma \operatorname{ctx} @ \mathscr{C}}{R \Gamma \operatorname{ctx} @ \mathscr{D}} \quad \frac{\tau: \Gamma \rightarrow \Gamma^{\prime} @ \mathscr{C}}{R \tau: R \Gamma \rightarrow R \Gamma^{\prime} @ \mathscr{D}} \quad \frac{\Gamma \vdash T \text { type } @ \mathscr{C}}{R \Gamma \vdash R T \text { type } @ \mathscr{D}} \quad \frac{\Gamma \vdash t: T @ \mathscr{C}}{R \Gamma \vdash R t: R T @ \mathscr{D}}$

Ok, so how do we check

$$
\frac{?}{\Delta \vdash R T \text { type }}
$$

We check $\Gamma \vdash T$ type © \mathscr{C} and substitute with $\sigma: \Delta \rightarrow R \Gamma$. BUT: Don't bother the user. Synthesize Γ and σ.
$\Gamma \in \mathscr{C}$ should be the universal context Γ such that $\sigma: \Delta \rightarrow R \Gamma$ exists. l.e. if $\sigma^{\prime}: \Delta \rightarrow R \Gamma^{\prime}$ then we should have $\Gamma \rightarrow \Gamma^{\prime}$

Let $R: \mathscr{C} \rightarrow \mathscr{D}$ be a CwF morphism.
$\frac{\Gamma \operatorname{ctx} @ \mathscr{C}}{R \Gamma \operatorname{ctx} @ \mathscr{D}} \quad \frac{\tau: \Gamma \rightarrow \Gamma^{\prime} @ \mathscr{C}}{R \tau: R \Gamma \rightarrow R \Gamma^{\prime} @ \mathscr{D}} \quad \frac{\Gamma \vdash T \text { type } @ \mathscr{C}}{R \Gamma \vdash R T \text { type } @ \mathscr{D}} \quad \frac{\Gamma \vdash t: T @ \mathscr{C}}{R \Gamma \vdash R t: R T @ \mathscr{D}}$

Ok, so how do we check

$$
\begin{aligned}
& ? \\
& \Delta \vdash R T \text { type }
\end{aligned}
$$

We check $\Gamma \vdash T$ type © \mathscr{C} and substitute with $\sigma: \Delta \rightarrow R \Gamma$. BUT: Don't bother the user. Synthesize Γ and σ.
$\Gamma \in \mathscr{C}$ should be the universal context Γ such that $\sigma: \Delta \rightarrow R \Gamma$ exists.
l.e. if $\sigma^{\prime}: \Delta \rightarrow R \Gamma^{\prime}$ then we should have

Let $R: \mathscr{C} \rightarrow \mathscr{D}$ be a CwF morphism.
$\frac{\Gamma \operatorname{ctx} @ \mathscr{C}}{R \Gamma \operatorname{ctx} @ \mathscr{D}} \quad \frac{\tau: \Gamma \rightarrow \Gamma^{\prime} @ \mathscr{C}}{R \tau: R \Gamma \rightarrow R \Gamma^{\prime} @ \mathscr{D}} \quad \frac{\Gamma \vdash T \text { type } @ \mathscr{C}}{R \Gamma \vdash R T \text { type @ }} \quad \frac{\Gamma \vdash t: T @ \mathscr{C}}{R \Gamma \vdash R t: R T @ \mathscr{D}}$

Ok, so how do we check

$$
\begin{aligned}
& ? \\
& \Delta \vdash R T \text { type }
\end{aligned}
$$

We check $\Gamma \vdash T$ type © \mathscr{C} and substitute with $\sigma: \Delta \rightarrow R \Gamma$. BUT: Don't bother the user. Synthesize Γ and σ.
$\Gamma \in \mathscr{C}$ should be the universal context Γ such that $\sigma: \Delta \rightarrow R \Gamma$ exists.
I.e. if $\sigma^{\prime}: \Delta \rightarrow R \Gamma^{\prime}$ then we should have $\Gamma \rightarrow \Gamma^{\prime}$.

Let $R: \mathscr{C} \rightarrow \mathscr{D}$ be a CwF morphism.
$\frac{\Gamma \operatorname{ctx} @ \mathscr{C}}{R \Gamma \operatorname{ctx} @ \mathscr{D}} \quad \frac{\tau: \Gamma \rightarrow \Gamma^{\prime} @ \mathscr{C}}{R \tau: R \Gamma \rightarrow R \Gamma^{\prime} @ \mathscr{D}} \quad \frac{\Gamma \vdash T \text { type } @ \mathscr{C}}{R \Gamma \vdash R T \text { type @ }} \quad \frac{\Gamma \vdash t: T @ \mathscr{C}}{R \Gamma \vdash R t: R T @ \mathscr{D}}$

Ok, so how do we check

$$
\begin{aligned}
& ? \\
& \Delta \vdash R T \text { type }
\end{aligned}
$$

We check $\Gamma \vdash T$ type © \mathscr{C} and substitute with $\sigma: \Delta \rightarrow R \Gamma$. BUT: Don't bother the user. Synthesize Γ and σ.
$\Gamma \in \mathscr{C}$ should be the universal context $L \Delta$ such that $\eta_{\Delta}: \Delta \rightarrow R L \Delta$ exists.
I.e. if $\sigma^{\prime}: \Delta \rightarrow R \Gamma^{\prime}$ then we should have $L \Delta \rightarrow \Gamma^{\prime}$.

Let $R: \mathscr{C} \rightarrow \mathscr{D}$ be a CwF morphism.
$\frac{\Gamma \operatorname{ctx} @ \mathscr{C}}{R \Gamma \operatorname{ctx} @ \mathscr{D}} \quad \frac{\tau: \Gamma \rightarrow \Gamma^{\prime} @ \mathscr{C}}{R \tau: R \Gamma \rightarrow R \Gamma^{\prime} @ \mathscr{D}} \quad \frac{\Gamma \vdash T \text { type } @ \mathscr{C}}{R \Gamma \vdash R T \text { type @ }} \quad \frac{\Gamma \vdash t: T @ \mathscr{C}}{R \Gamma \vdash R t: R T @ \mathscr{D}}$

Ok, so how do we check

$$
\begin{aligned}
& ? \\
& \Delta \vdash R T \text { type }
\end{aligned}
$$

We check $\Gamma \vdash T$ type © \mathscr{C} and substitute with $\sigma: \Delta \rightarrow R \Gamma$. BUT: Don't bother the user. Synthesize Γ and σ.
$\Gamma \in \mathscr{C}$ should be the universal context $L \Delta$ such that $\eta_{\Delta}: \Delta \rightarrow R L \Delta$ exists.
I.e. if $\sigma^{\prime}: \Delta \rightarrow R \Gamma^{\prime}$ then we should have $L \Delta \rightarrow \Gamma^{\prime}$.

+ some sensible laws $\sim L \dashv R$.

MTT [GKNB21] is parametrized by a 2-category:

- modes p, q, r,
- modalities $\mu: p \rightarrow q$

Semantics:
 - $\pi p \pi$ is a (often presheaf) category modelling all of DTT,
 - $\llbracket \mu\rceil$ is a (weak) dependent right adjoint (DRA)

Note: If codomain \mathscr{D} is democratic, then DRA = right adjoint that is a CwF morphism.

MTT [GKNB21] is parametrized by a 2-category:

- modes p, q, r, \ldots
- modalities $\mu: p \rightarrow q$

Semantics:

- $\llbracket p \rrbracket$ is a (often presheaf) category modelling all of DTT,
- $\lfloor\mu \rrbracket$ is a (weak) dependent right adjoint (DRA)

Note: If codomain \mathscr{D} is democratic, then DRA = right adjoint that is a CwF morphism.

MTT [GKNB21] is parametrized by a 2-category:

- modes p, q, r, \ldots
- modalities $\mu: p \rightarrow q$

$$
\frac{\Gamma \operatorname{ctx} @ q}{\Gamma, \mathbf{Q}_{\mu} \operatorname{ctx} @ p}
$$

$$
\frac{\Gamma, \mathbf{\Omega}_{\mu} \vdash T \text { type } @ p}{\Gamma \vdash\langle\mu \mid T\rangle \text { type } @ q}
$$

$$
\frac{\Gamma, \mathbf{@}_{\mu} \vdash t: T @ p}{\Gamma \vdash \bmod _{\mu} t:\langle\mu \mid T\rangle @ q}
$$

Semantics:

- $\llbracket p \rrbracket$ is a (often presheaf) category modelling all of DTT,
- $[\mu \rrbracket$ is a (weak) dependent right adjoint (DRA)

MTT [GKNB21] is parametrized by a 2-category:

- modes p, q, r, \ldots
- modalities $\mu: p \rightarrow q$

$$
\frac{\Gamma \operatorname{ctx} @ q}{\Gamma, \mathbf{Q}_{\mu} \operatorname{ctx} @ p}
$$

$$
\frac{\Gamma, \mathbf{\Omega}_{\mu} \vdash T \text { type @ }}{\Gamma \vdash\langle\mu \mid T\rangle \text { type @ } q}
$$

$$
\frac{\Gamma, \mathbf{@}_{\mu} \vdash t: T @ p}{\Gamma \vdash \bmod _{\mu} t:\langle\mu \mid T\rangle @ q}
$$

Semantics:

- $\llbracket p \rrbracket$ is a (often presheaf) category modelling all of DTT,
- $\llbracket \mu \rrbracket$ is a (weak) dependent right adjoint (DRA) [BCMMPS20] to $\llbracket \mathbf{Q}_{\mu} \rrbracket$,

MTT [GKNB21] is parametrized by a 2-category:

- modes p, q, r, \ldots
- modalities $\mu: p \rightarrow q$

$$
\frac{\Gamma \operatorname{ctx} @ q}{\Gamma, \mathbf{Q}_{\mu} \operatorname{ctx} @ p}
$$

$$
\frac{\Gamma, \mathbf{\Omega}_{\mu} \vdash T \text { type @ }{ }^{\circ}}{\Gamma \vdash\langle\mu \mid T\rangle \text { type @q }}
$$

$$
\frac{\Gamma, \mathbf{@}_{\mu} \vdash t: T @ p}{\Gamma \vdash \bmod _{\mu} t:\langle\mu \mid T\rangle @ q}
$$

- (2-cells $\alpha: \mu \Rightarrow v$).

Semantics:

- $\llbracket p \rrbracket$ is a (often presheaf) category modelling all of DTT,
- $\llbracket \mu \rrbracket$ is a (weak) dependent right adjoint (DRA) [BCMMPS20] to $\llbracket \mathbf{Q}_{\mu} \rrbracket$,

MTT [GKNB21] is parametrized by a 2-category:

- modes p, q, r, \ldots
- modalities $\mu: p \rightarrow q$

$$
\frac{\Gamma \operatorname{ctx} @ q}{\Gamma, \mathbf{Q}_{\mu} \operatorname{ctx} @ p}
$$

$$
\frac{\Gamma, \mathbf{\Omega}_{\mu} \vdash T \text { type @ }}{\Gamma \vdash\langle\mu \mid T\rangle \text { type @ } q}
$$

$$
\frac{\Gamma, \mathbf{@}_{\mu} \vdash t: T @ p}{\Gamma \vdash \bmod _{\mu} t:\langle\mu \mid T\rangle @ q}
$$

- (2-cells $\alpha: \mu \Rightarrow v$).

Semantics:

- $\llbracket p \rrbracket$ is a (often presheaf) category modelling all of DTT,
- $\llbracket \mu \rrbracket$ is a (weak) dependent right adjoint (DRA) [BCMMPS20] to $\llbracket \mathbf{Q}_{\mu} \rrbracket$,

Note: If codomain \mathscr{D} is democratic, then DRA $=$ right adjoint that is a CwF morphism.
"A more serious and mathematical issue is that MTT requires all modalities to be right adjoints, semantically, because you have to have some operation to interpret the locking functors on contexts. (And FitchTT even requires those left adjoints to themselves be (parametric) right adjoints.) This seems a serious restriction on the kinds of situations we can model."
— Mike Shulman, HoTT mailing list, Dec 1, 2022 (emphases are ours)

- Valid concern: We can internally prove that MTT modalities preserve limits,
- User-friendly solution space seems empty: We need the left adjoint.
"A more serious and mathematical issue is that MTT requires all modalities to be right adjoints, semantically, because you have to have some operation to interpret the locking functors on contexts. (And FitchTT even requires those left adjoints to themselves be (parametric) right adjoints.) This seems a serious restriction on the kinds of situations we can model."
— Mike Shulman, HoTT mailing list, Dec 1, 2022 (emphases are ours)
- Valid concern: We can internally prove that MTT modalities preserve limits, e.g. $\langle\mu \mid A \times B\rangle \cong\langle\mu \mid A\rangle \times\langle\mu \mid B\rangle$.
- User-friendly solution space seems empty: We need the left adjoint.
"A more serious and mathematical issue is that MTT requires all modalities to be right adjoints, semantically, because you have to have some operation to interpret the locking functors on contexts. (And FitchTT even requires those left adjoints to themselves be (parametric) right adjoints.) This seems a serious restriction on the kinds of situations we can model."
- Mike Shulman, HoTT mailing list, Dec 1, 2022 (emphases are ours)
- Valid concern: We can internally prove that MTT modalities preserve limits, e.g. $\langle\mu \mid A \times B\rangle \cong\langle\mu \mid A\rangle \times\langle\mu \mid B\rangle$.
- User-friendly solution space seems empty: We need the left adjoint.

Multimodal Adjoint Type Theory (MATT):
[Shulman, March 2023]
Categorically Adds locks to contexts cofreely.

Morally Move to metaprogramming with continuations.

Categoricaily iviove to copresneaf category.

```
Morally Defines locks by induction on
```

Morally Defines locks by induction on
syntactic context formation.
syntactic context formation.
These approximate the left
These approximate the left
adjoint.
adjoint.
()}\langle\mu|-\rangle\mathrm{ need not be a DRA.
()}\langle\mu|-\rangle\mathrm{ need not be a DRA.
() Subsumes MTT without
() Subsumes MTT without
modifications.
modifications.
()}=>\mathrm{ We can still internally prove
()}=>\mathrm{ We can still internally prove
that }\langle\mu|-\rangle\mathrm{ preserves limits.
that }\langle\mu|-\rangle\mathrm{ preserves limits.
This is also assumed in the
This is also assumed in the
model.

```
    model.
```

Multimodal Adjoint Type Theory (MATT):
[Shulman, March 2023]
Categorically Adds locks to contexts cofreely.
Morally Defines locks by induction on syntactic context formation. These approximate the left adjoint.

Our solution (WIP)

Categorically Move to copresheaf category.
Morally Move to metaprogramming with continuations.
l - - does not need to

- be a DRA,
- preserve limits,
- or even be applicative.

Multimodal Adjoint Type Theory (MATT):

[Shulman, March 2023]

Categorically Adds locks to contexts cofreely.
Morally Defines locks by induction on syntactic context formation.
These approximate the left adjoint.
() $\langle\mu \mid-\rangle$ need not be a DRA.
() Subsumes MTT without modifications.

[^0]
Our solution (WIP):

Categorically Move to copresheaf category.
Morally Move to metaprogramming with continuations.

- be a DRA,
- preserve limits,
- or even be applicative.

Multimodal Adjoint Type Theory (MATT):

[Shulman, March 2023]

Categorically Adds locks to contexts cofreely.
Morally Defines locks by induction on syntactic context formation.
These approximate the left adjoint.
() $\langle\mu \mid-\rangle$ need not be a DRA.
() Subsumes MTT without modifications.
(2) \Rightarrow We can still internally prove that $\langle\mu \mid-\rangle$ preserves limits.
This is also assumed in the model.
[Shu23, assumption 4.1]

Our solution (WIP)

Categorically Move to copresheaf category
Morally Move to metaprogramming with continuations.

- be a DRA,
- preserve limits,
- or even be applicative.
- be a DRA.
- preserve limits,
- or even be applicative

Multimodal Adjoint Type Theory (MATT):

[Shulman, March 2023]

Categorically Adds locks to contexts cofreely.
Morally Defines locks by induction on syntactic context formation.
These approximate the left adjoint.
() $\langle\mu \mid-\rangle$ need not be a DRA.
() Subsumes MTT without modifications.
; \Rightarrow We can still internally prove that $\langle\mu \mid-\rangle$ preserves limits. This is also assumed in the model.
[Shu23, assumption 4.1]

Our solution (WIP):
Categorically Move to copresheaf category.
Morally Move to metaprogramming
with continuations.
(:) $|\mu|-\rangle$ does not need to

- be a DRA
- preserve limits,
- or even be applicative.

```
() In particular, }\langle\mu|-\rangle\mathrm{ may not
    - be a DRA
    - preserve limits,
    - or even be applicative
```

Multimodal Adjoint Type Theory (MATT):

[Shulman, March 2023]

Categorically Adds locks to contexts cofreely.
Morally Defines locks by induction on syntactic context formation.
These approximate the left adjoint.
() $\langle\mu \mid-\rangle$ need not be a DRA.
() Subsumes MTT without modifications.
; \Rightarrow We can still internally prove that $\langle\mu \mid-\rangle$ preserves limits. This is also assumed in the model.
[Shu23, assumption 4.1]

Our solution (WIP):
Categorically Move to copresheaf category.
Morally Move to metaprogramming with continuations.

(:) $\langle\mu \mid-\rangle$ does not need to

- preserve limits,
- or even be applicative
- be a DRA
- nreserve limis
- or even be applicative

Multimodal Adjoint Type Theory (MATT):

[Shulman, March 2023]

Categorically Adds locks to contexts cofreely.

Morally Defines locks by induction on syntactic context formation.
These approximate the left adjoint.
() $\langle\mu \mid-\rangle$ need not be a DRA.
() Subsumes MTT without modifications.
: $\Rightarrow \Rightarrow$ We can still internally prove that $\langle\mu \mid-\rangle$ preserves limits. This is also assumed in the model.
[Shu23, assumption 4.1]

Our solution (WIP):
Categorically Move to copresheaf category.
Morally Move to metaprogramming with continuations.
(); $\langle\mu \mid-\rangle$ does not need to:

- be a DRA,
- preserve limits,
- or even be applicative.

Multimodal Adjoint Type Theory (MATT):

[Shulman, March 2023]

Categorically Adds locks to contexts cofreely.

Morally Defines locks by induction on syntactic context formation.
These approximate the left adjoint.
() $\langle\mu \mid-\rangle$ need not be a DRA.
() Subsumes MTT without modifications.
: $\Rightarrow \Rightarrow$ We can still internally prove that $\langle\mu \mid-\rangle$ preserves limits. This is also assumed in the model.
[Shu23, assumption 4.1]

Our solution (WIP):
Categorically Move to copresheaf category.
Morally Move to metaprogramming with continuations.
(); $\langle\mu \mid-\rangle$ does not need to:

- be a DRA,
- preserve limits,
- or even be applicative.
© Modifies MTT.
- be a DRA
- preserve limits
- or even be applicative

Multimodal Adjoint Type Theory (MATT):

[Shulman, March 2023]

Categorically Adds locks to contexts cofreely.

Morally Defines locks by induction on syntactic context formation.
These approximate the left adjoint.
() $\langle\mu \mid-\rangle$ need not be a DRA.
() Subsumes MTT without modifications.
; \Rightarrow We can still internally prove that $\langle\mu \mid-\rangle$ preserves limits. This is also assumed in the model.
[Shu23, assumption 4.1]

Our solution (WIP):
Categorically Move to copresheaf category.
Morally Move to metaprogramming with continuations.
(); $\langle\mu \mid-\rangle$ does not need to:

- be a DRA,
- preserve limits,
- or even be applicative.
© Modifies MTT.
© In particular, $\langle\mu \mid-\rangle$ may not:
- be a DRA,
- preserve limits,
- or even be applicative.

Multimodal Adjoint Type Theory (MATT):

[Shulman, March 2023]

Categorically Adds locks to contexts cofreely.

Morally Defines locks by induction on syntactic context formation.
These approximate the left adjoint.
() $\langle\mu \mid-\rangle$ need not be a DRA.
() Subsumes MTT without modifications.
; \Rightarrow We can still internally prove that $\langle\mu \mid-\rangle$ preserves limits. This is also assumed in the model.
[Shu23, assumption 4.1]

Our solution (WIP):
Categorically Move to copresheaf category.
Morally Move to metaprogramming with continuations.
(); $\langle\mu \mid-\rangle$ does not need to:

- be a DRA,
- preserve limits,
- or even be applicative.
© Modifies MTT.
© In particular, $\langle\mu \mid-\rangle$ may not:
- be a DRA,
- preserve limits,
- or even be applicative.

Great/Terrible!

Presheaves:

$\operatorname{Psh}(\mathscr{C})=\left[\mathscr{C}^{\text {op }}\right.$, Set $]$

Copresheaves: Copsh(C) $=$ Psh($(\mathscr{C} \text { op })^{\text {op }}$

Swap \& curry Hom : \mathscr{C} op $\times \mathscr{C} \rightarrow$ Set
 to get $\mathbf{y}: \mathscr{C} \rightarrow \operatorname{Psh}(\mathscr{C}): \Gamma \mapsto \operatorname{Hom}(-, \Gamma)$

Functor $F: \mathscr{C} \rightarrow \mathscr{D}$ yields

$F_{!} \dashv F^{*} \dashv F_{*}: \operatorname{Psh}(\mathscr{C}) \rightarrow \operatorname{Psh}(\mathscr{D})$
where $F_{\text {! }}$ extends F :

Curry Hom ${ }^{\text {op }}: \mathscr{C} \times \mathscr{C}^{\text {op }} \rightarrow$ Set $^{\text {op }}$
to get $\mathbf{h}: \mathscr{C} \rightarrow \operatorname{Copsh}(\mathscr{C}): \Gamma \mapsto \operatorname{Hon}(\Gamma,-)$
sending Γ to its copresheaf of continuations.
Functor $F: \mathscr{C} \rightarrow \mathscr{D}$ yields
$F_{\circ} \dashv F^{\circ} \dashv F_{?}: \operatorname{Copsh}(\mathscr{C}) \rightarrow \operatorname{Copsh}(\mathscr{D})$
where $F_{\text {? }}$ extends F :

Presheaves:

$\operatorname{Psh}(\mathscr{C})=\left[\mathscr{C}^{\text {op }}\right.$, Set $]$

Copresheaves:

 Copsh($(\mathscr{C})=$ Psh($\mathscr{C O P D}^{\text {op }}$Swap \& curry Hom : $\mathscr{C}^{\mathrm{op}} \times \mathscr{C} \rightarrow$ Set to get $\mathbf{y}: \mathscr{C} \rightarrow \operatorname{Psh}(\mathscr{C}): \Gamma \mapsto \operatorname{Hom}(-, \Gamma)$

where $F_{!}$extends F :

Curry Hom ${ }^{\text {op }}: \mathscr{C} \times \mathscr{C}^{\text {op }} \rightarrow$ Set $^{\text {Op }}$
to get $\mathbf{h}: \mathscr{C} \rightarrow \operatorname{Copsh}(\mathscr{C}): \Gamma \mapsto \operatorname{Hon}(\Gamma,-)$
sending Γ to its copresheaf of continuations.

Functor $F: \mathscr{C} \rightarrow \mathscr{D}$ yields
$F_{\circ} \dashv F^{\circ} \dashv F_{?}: \operatorname{Copsh}(\mathscr{C}) \rightarrow \operatorname{Copsh}(\mathscr{D})$
where $F_{\text {? }}$ extends F :

Presheaves:

$\operatorname{Psh}(\mathscr{C})=\left[\mathscr{C}^{\text {op }}\right.$, Set $]$

Swap \& curry Hom : $\mathscr{C}^{\text {op }} \times \mathscr{C} \rightarrow$ Set
to get $\mathbf{y}: \mathscr{C} \rightarrow \operatorname{Psh}(\mathscr{C}): \Gamma \mapsto \operatorname{Hom}(-, \Gamma)$

Functor $F: \mathscr{C} \rightarrow \mathscr{D}$ yields
$F_{!} \dashv F^{*} \dashv F_{*}: \operatorname{Psh}(\mathscr{C}) \rightarrow \operatorname{Psh}(\mathscr{D})$
where $F_{!}$extends F :

Curry Hom ${ }^{\mathrm{OP}}: \mathscr{C} \times \mathscr{C}^{\mathrm{op}} \rightarrow$ Set $^{\mathrm{Op}}$
to get $\mathbf{h}: \mathscr{C} \rightarrow \operatorname{Copsh}(\mathscr{C}): \Gamma \mapsto \operatorname{Hom}(\Gamma,-)$
sending Γ to its copresheaf of continuations.
Functor $F: \mathscr{C} \rightarrow \mathscr{D}$ yields
$F_{\circ} \dashv F^{\circ} \dashv F_{?}: \operatorname{Copsh}(\mathscr{C}) \rightarrow \operatorname{Copsh}(\mathscr{D})$
where $F_{\text {? }}$ extends F

Presheaves:

$\operatorname{Psh}(\mathscr{C})=\left[\mathscr{C}^{\text {op }}\right.$, Set $]$

Swap \& curry Hom : $\mathscr{C}{ }^{\text {op }} \times \mathscr{C} \rightarrow$ Set to get $\mathbf{y}: \mathscr{C} \rightarrow \operatorname{Psh}(\mathscr{C}): \Gamma \mapsto \operatorname{Hom}(-, \Gamma)$

Functor $F: \mathscr{C} \rightarrow \mathscr{D}$ yields
$F_{!} \dashv F^{*} \dashv F_{*}: \operatorname{Psh}(\mathscr{C}) \rightarrow \operatorname{Psh}(\mathscr{D})$
where $F_{\text {! }}$ extends F :

Copresheaves:

$\operatorname{Copsh}(\mathscr{C})=\operatorname{Psh}\left(\mathscr{C}^{\text {op }}\right)^{\text {op }}$

Curry Hom ${ }^{\mathrm{OP}}: \mathscr{C} \times \mathscr{C}^{\mathrm{OP}} \rightarrow$ Set $^{\mathrm{OD}}$
to get $\mathbf{h}: \mathscr{C} \rightarrow \operatorname{Copsh}(\mathscr{C}): \Gamma \mapsto \operatorname{Hon}(\Gamma,-)$
sending Γ to its copresheaf of continuations.

Functor $F: \mathscr{C} \rightarrow \mathscr{D}$ yields
$F_{\circ} \dashv F^{\circ} \dashv F_{?}: \operatorname{Copsh}(\mathscr{C}) \rightarrow \operatorname{Copsh}(\mathscr{D})$
where $F_{\text {? }}$ extends F

Presheaves:

$\operatorname{Psh}(\mathscr{C})=\left[\mathscr{C}^{\text {op }}\right.$, Set $]$

Copresheaves:

$\operatorname{Copsh}(\mathscr{C})=\operatorname{Psh}\left(\mathscr{C}^{\mathrm{op}}\right)^{\mathrm{Op}}$
$=[\mathscr{C}, \text { Set }]^{\text {op }}=\left[\mathscr{C}\right.$ op, Set $\left.^{\text {op }}\right]$
Curry Hom ${ }^{\text {OP }}: \mathscr{C} \times \mathscr{C}$ op \rightarrow Set $^{\text {Op }}$
to get $\mathbf{h}: \mathscr{C} \rightarrow \operatorname{Copsh}(\mathscr{C}): \Gamma \mapsto \operatorname{Hom}(\Gamma,-)$
sending Γ to its copresheaf of continuations.

Functor $F: \mathscr{C} \rightarrow \mathscr{D}$ yields
$F_{\circ} \dashv F^{\circ} \dashv F_{?}: \operatorname{Copsh}(\mathscr{C}) \rightarrow \operatorname{Copsh}(\mathscr{D})$
where F_{7} extends F

Presheaves:

$\operatorname{Psh}(\mathscr{C})=\left[\mathscr{C}^{\text {op }}\right.$, Set $]$

Copresheaves:

$\operatorname{Copsh}(\mathscr{C})=\operatorname{Psh}\left(\mathscr{C}^{\mathrm{op}}\right)^{\mathrm{Op}}$
$=[\mathscr{C}, \text { Set }]^{\text {op }}=\left[\mathscr{C}\right.$ op, Set $\left.^{\text {op }}\right]$
Curry Hom $^{\mathrm{op}}: \mathscr{C} \times \mathscr{C}^{\mathrm{op}} \rightarrow$ Set $^{\mathrm{op}}$ to get $\mathbf{h}: \mathscr{C} \rightarrow \operatorname{Copsh}(\mathscr{C}): \Gamma \mapsto \operatorname{Hom}(\Gamma,-)$
sending Γ to its copresheaf of continuations.

Functor $F: \mathscr{C} \rightarrow \mathscr{D}$ yields
$F_{\circ} \dashv F^{\circ} \dashv F_{?}: \operatorname{Copsh}(\mathscr{C}) \rightarrow \operatorname{Copsh}(\mathscr{D})$
where $F_{\text {? }}$ extends F

Presheaves:

$\operatorname{Psh}(\mathscr{C})=\left[\mathscr{C}^{\mathrm{op}}\right.$, Set $]$

Copresheaves:

$\operatorname{Copsh}(\mathscr{C})=\operatorname{Psh}\left(\mathscr{C}^{\text {op }}\right)^{\text {op }}$
$=[\mathscr{C}, \text { Set }]^{\text {op }}=\left[\mathscr{C}\right.$ op, Set $\left.^{\text {op }}\right]$
Curry Hom $^{\text {op }}: \mathscr{C} \times \mathscr{C}^{\text {op }} \rightarrow$ Set $^{\text {op }}$ to get $\mathbf{h}: \mathscr{C} \rightarrow \operatorname{Copsh}(\mathscr{C}): \Gamma \mapsto \operatorname{Hom}(\Gamma,-)$ sending Γ to its copresheaf of continuations.

Functor $F: \mathscr{C} \rightarrow \mathscr{D}$ yields

where $F_{\text {? }}$ extends F

Presheaves:

$\operatorname{Psh}(\mathscr{C})=\left[\mathscr{C}^{\text {op }}\right.$, Set $]$

Copresheaves:

$\operatorname{Copsh}(\mathscr{C})=\operatorname{Psh}\left(\mathscr{C}^{\mathrm{op}}\right)^{\text {op }}$
$=[\mathscr{C}, \text { Set }]^{\text {op }}=\left[\mathscr{C}\right.$ op, Set $\left.^{\text {op }}\right]$
Curry Hom $^{\mathrm{op}}: \mathscr{C} \times \mathscr{C}^{\mathrm{op}} \rightarrow$ Set $^{\mathrm{op}}$ to get $\mathbf{h}: \mathscr{C} \rightarrow \operatorname{Copsh}(\mathscr{C}): \Gamma \mapsto \operatorname{Hom}(\Gamma,-)$ sending Γ to its copresheaf of continuations.

Functor $F: \mathscr{C} \rightarrow \mathscr{D}$ yields
$F_{\circ} \dashv F^{\circ} \dashv F_{?}: \operatorname{Copsh}(\mathscr{C}) \rightarrow \operatorname{Copsh}(\mathscr{D})$ where $F_{\text {? }}$ extends F :

Every functor is a left/right-relative left/right adjoint

Presheaves:

Copresheaves:

$\operatorname{Hom}_{\mathscr{D}}(F \Delta, \Gamma)$
yF \triangle
$F_{!} y \Delta$
$\mathrm{y} \Delta \rightarrow F^{*} \mathrm{y} \mid$
$\operatorname{Hom}_{\mathscr{D}}(-, \Delta) \rightarrow \operatorname{Hom}_{\mathscr{D}}(F-, \Gamma)$

This is a left-relative adjunction

Every functor is a left/right-relative left/right adjoint

Presheaves:

Copresheaves:

$$
\begin{aligned}
& \operatorname{Hom}_{\mathscr{D}}(F \Delta, \Gamma) \\
\cong & \mathbf{y} F \Delta \rightarrow \mathbf{y} \Gamma
\end{aligned}
$$

This is a left-relative adjunction:

Every functor is a left/right-relative left/right adjoint

Presheaves:

$$
\begin{aligned}
& \operatorname{Hom}_{\mathscr{D}}(F \Delta, \Gamma) \\
\cong & \mathbf{y} F \Delta \rightarrow \mathbf{y} \Gamma \\
\cong & F_{!} \mathbf{y} \Delta \rightarrow \mathbf{y} \Gamma
\end{aligned}
$$

Copresheaves:

```
\(\mathbf{h} \Gamma \rightarrow \mathbf{h F} \Delta\)
```

$\mathrm{h} \Gamma \rightarrow \mathrm{F}_{7} \mathrm{~h} \Delta$

This is a right-relative adjunction where

Every functor is a left/right-relative left/right adjoint

Presheaves:

$$
\begin{aligned}
& \operatorname{Hom}_{\mathscr{D}}(F \Delta, \Gamma) \\
\cong & \mathbf{y} F \Delta \rightarrow \mathbf{y} \Gamma \\
\cong & F!\mathbf{y} \Delta \rightarrow \mathbf{y} \Gamma \\
\cong & \mathbf{y} \Delta \rightarrow F^{*} \mathbf{y} \Gamma
\end{aligned}
$$

Copresheaves:

$\mathrm{h} \Gamma \rightarrow F_{7} \mathrm{~h} \Delta$ $\operatorname{Hom}_{\mathscr{D}}(\Delta,-) \rightarrow \operatorname{Hom}_{\mathscr{D}}(\Gamma, F-)$

Every functor is a left/right-relative left/right adjoint

Presheaves:

$$
\begin{aligned}
& \operatorname{Hom}_{\mathscr{D}}(F \Delta, \Gamma) \\
\cong & \mathbf{y} F \Delta \rightarrow \mathbf{y} \Gamma \\
\cong & F_{!} \mathbf{y} \Delta \rightarrow \mathbf{y} \Gamma \\
\cong & \mathbf{y} \Delta \rightarrow F^{*} \mathbf{y} \Gamma \\
= & \operatorname{Hom}_{\mathscr{D}}(-, \Delta) \rightarrow \operatorname{Hom}_{\mathscr{D}}(F-, \Gamma)
\end{aligned}
$$

Copresheaves:

This is a left-relative adjunction:

This is a right-relative adjunction:

Every functor is a left/right-relative left/right adjoint

Presheaves:

$$
\begin{aligned}
& \operatorname{Hom}_{\mathscr{D}}(F \Delta, \Gamma) \\
\cong & \mathbf{y} F \Delta \rightarrow \mathbf{y} \Gamma \\
\cong & F \mathbf{y} \Delta \rightarrow \mathbf{y} \Gamma \\
\cong & \mathbf{y} \Delta \rightarrow F^{*} \mathbf{y} \Gamma \\
= & \operatorname{Hom}_{\mathscr{D}}(-, \Delta) \rightarrow \operatorname{Hom}_{\mathscr{D}}(F-, \Gamma)
\end{aligned}
$$

This is a left-relative adjunction:
$F_{\mathbf{y}} \dashv F^{*} \mathbf{y}$

Copresheaves:

```
Homg(\Gamma,F\Delta)
h\Gamma }->\mathrm{ F>h }
```

```
This is a right-relative adjunction:
```

$F^{\circ} \mathbf{h} \dashv_{\mathrm{h}} F$

Every functor is a left/right-relative left/right adjoint

Presheaves:

$$
\begin{aligned}
& \operatorname{Hom}_{\mathscr{D}}(F \Delta, \Gamma) \\
\cong & \mathbf{y} F \Delta \rightarrow \mathbf{y} \Gamma \\
\cong & F_{!} \mathbf{y} \Delta \rightarrow \mathbf{y} \Gamma \\
\cong & \mathbf{y} \Delta \rightarrow F^{*} \mathbf{y} \Gamma \\
= & \operatorname{Hom}_{\mathscr{D}}(-, \Delta) \rightarrow \operatorname{Hom}_{\mathscr{D}}(F-, \Gamma)
\end{aligned}
$$

This is a left-relative adjunction:
$F_{\mathbf{y}} \dashv F^{*} \mathbf{y}$

Copresheaves:

$$
\begin{aligned}
& \operatorname{Hom}_{\mathscr{D}}(\Gamma, F \Delta) \\
& \mathrm{h} \Gamma \rightarrow \mathrm{~h} F \Delta \\
& \mathrm{~h} \Gamma \rightarrow F \cdot \mathrm{~F}, \mathrm{~h} \triangle
\end{aligned}
$$

$$
\operatorname{Hom}_{\mathscr{D}}(\Delta,-) \rightarrow \operatorname{Hom}_{\mathscr{D}}(\Gamma, F-)
$$

Every functor is a left/right-relative left/right adjoint

Presheaves:

$$
\begin{aligned}
& \operatorname{Hom}_{\mathscr{D}}(F \Delta, \Gamma) \\
\cong & \mathbf{y} F \Delta \rightarrow \mathbf{y} \Gamma \\
\cong & F_{!} \mathbf{y} \Delta \rightarrow \mathbf{y} \Gamma \\
\cong & \mathbf{y} \Delta \rightarrow F^{*} \mathbf{y} \Gamma \\
= & \operatorname{Hom}_{\mathscr{D}}(-, \Delta) \rightarrow \operatorname{Hom}_{\mathscr{D}}(F-, \Gamma)
\end{aligned}
$$

This is a left-relative adjunction:
$F_{\mathbf{y}} \dashv F^{*} \mathbf{y}$

Copresheaves:

$$
\begin{aligned}
& \operatorname{Hom}_{\mathscr{D}}(\Gamma, F \Delta) \\
\cong & \mathbf{h} \Gamma \rightarrow \mathbf{h} F \Delta \\
\cong & \mathrm{~h} \Gamma \rightarrow F_{?} \mathrm{~h} \Delta
\end{aligned}
$$

Every functor is a left/right-relative left/right adjoint

Presheaves:

$$
\begin{aligned}
& \operatorname{Hom}_{\mathscr{D}}(F \Delta, \Gamma) \\
\cong & \mathbf{y} F \Delta \rightarrow \mathbf{y} \Gamma \\
\cong & F_{!} \mathbf{y} \Delta \rightarrow \mathbf{y} \Gamma \\
\cong & \mathbf{y} \Delta \rightarrow F^{*} \mathbf{y} \Gamma \\
= & \operatorname{Hom}_{\mathscr{D}}(-, \Delta) \rightarrow \operatorname{Hom}_{\mathscr{D}}(F-, \Gamma)
\end{aligned}
$$

This is a left-relative adjunction:
$F_{\mathbf{y}} \dashv F^{*} \mathbf{y}$

Copresheaves:

$$
\begin{aligned}
& \operatorname{Hom}_{\mathscr{D}}(\Gamma, F \Delta) \\
\cong & \mathbf{h} \Gamma \rightarrow \mathbf{h} F \Delta \\
\cong & \mathbf{h} \Gamma \rightarrow F_{?} \mathbf{h} \Delta
\end{aligned}
$$

This is a right-relative adjunction:

Every functor is a left/right-relative left/right adjoint

Presheaves:

$$
\begin{aligned}
& \operatorname{Hom}_{\mathscr{D}}(F \Delta, \Gamma) \\
\cong & \mathbf{y} F \Delta \rightarrow \mathbf{y} \Gamma \\
\cong & F_{!} \mathbf{y} \Delta \rightarrow \mathbf{y} \Gamma \\
\cong & \mathbf{y} \Delta \rightarrow F^{*} \mathbf{y} \Gamma \\
= & \operatorname{Hom}_{\mathscr{D}}(-, \Delta) \rightarrow \operatorname{Hom}_{\mathscr{D}}(F-, \Gamma)
\end{aligned}
$$

This is a left-relative adjunction:
$F_{\mathbf{y}} \dashv F^{*} \mathbf{y}$

Copresheaves:

$$
\begin{aligned}
& \operatorname{Hom}_{\mathscr{D}}(\Gamma, F \Delta) \\
\cong & \mathbf{h} \Gamma \rightarrow \mathbf{h} F \Delta \\
\cong & \mathbf{h} \Gamma \rightarrow F_{?} \mathbf{h} \Delta \\
\cong & F^{\circ} \mathbf{h} \Gamma \rightarrow \mathbf{h} \Delta
\end{aligned}
$$

$$
\operatorname{Hom}_{\mathscr{D}}(\Delta,-) \rightarrow \operatorname{Hom}_{\mathscr{D}}(\Gamma, F-)
$$

Every functor is a left/right-relative left/right adjoint

Presheaves:

$$
\begin{aligned}
& \operatorname{Hom}_{\mathscr{D}}(F \Delta, \Gamma) \\
\cong & \mathbf{y} F \Delta \rightarrow \mathbf{y} \Gamma \\
\cong & F_{!} \mathbf{y} \Delta \rightarrow \mathbf{y} \Gamma \\
\cong & \mathbf{y} \Delta \rightarrow F^{*} \mathbf{y} \Gamma \\
= & \operatorname{Hom}_{\mathscr{D}}(-, \Delta) \rightarrow \operatorname{Hom}_{\mathscr{D}}(F-, \Gamma)
\end{aligned}
$$

This is a left-relative adjunction:
$F_{\mathbf{y}} \dashv F^{*} \mathbf{y}$

Copresheaves:

$$
\begin{aligned}
& \operatorname{Hom}_{\mathscr{D}}(\Gamma, F \Delta) \\
\cong & \mathbf{h} \Gamma \rightarrow \mathbf{h} F \Delta \\
\cong & \mathbf{h} \Gamma \rightarrow F_{?} \mathbf{h} \Delta \\
\cong & F^{\circ} \mathbf{h} \Gamma \rightarrow \mathbf{h} \Delta \\
= & \operatorname{Hom}_{\mathscr{D}}(\Delta,-) \rightarrow \operatorname{Hom}_{\mathscr{D}}(\Gamma, F-)
\end{aligned}
$$

This is a right-relative adjunction:

Every functor is a left/right-relative left/right adjoint

Presheaves:

$$
\begin{aligned}
& \operatorname{Hom}_{\mathscr{D}}(F \Delta, \Gamma) \\
\cong & \mathbf{y} F \Delta \rightarrow \mathbf{y} \Gamma \\
\cong & F_{!} \mathbf{y} \Delta \rightarrow \mathbf{y} \Gamma \\
\cong & \mathbf{y} \Delta \rightarrow F^{*} \mathbf{y} \Gamma \\
= & \operatorname{Hom}_{\mathscr{D}}(-, \Delta) \rightarrow \operatorname{Hom}_{\mathscr{D}}(F-, \Gamma)
\end{aligned}
$$

This is a left-relative adjunction:
$F_{\mathbf{y}} \dashv F^{*} \mathbf{y}$

Copresheaves:

$$
\begin{aligned}
& \operatorname{Hom}_{\mathscr{D}}(\Gamma, F \Delta) \\
\cong & \mathbf{h} \Gamma \rightarrow \mathbf{h} F \Delta \\
\cong & \mathbf{h} \Gamma \rightarrow F_{?} \mathbf{h} \Delta \\
\cong & F^{\circ} \mathbf{h} \Gamma \rightarrow \mathbf{h} \Delta \\
= & \operatorname{Hom}_{\mathscr{D}}(\Delta,-) \rightarrow \operatorname{Hom}_{\mathscr{D}}(\Gamma, F-)
\end{aligned}
$$

This is a right-relative adjunction: $F^{\circ} \mathbf{h} \dashv_{\mathrm{h}} F$

Every functor is a left/right-relative left/right adjoint

Presheaves:

$$
\begin{aligned}
& \operatorname{Hom}_{\mathscr{D}}(F \Delta, \Gamma) \\
\cong & \mathbf{y} F \Delta \rightarrow \mathbf{y} \Gamma \\
\cong & F_{!} \mathbf{y} \Delta \rightarrow \mathbf{y} \Gamma \\
\cong & \mathbf{y} \Delta \rightarrow F^{*} \mathbf{y} \Gamma \\
= & \operatorname{Hom}_{\mathscr{D}}(-, \Delta) \rightarrow \operatorname{Hom}_{\mathscr{D}}(F-, \Gamma)
\end{aligned}
$$

This is a left-relative adjunction:
$F_{\mathbf{y}} \dashv F^{*} \mathbf{y}$

Copresheaves:

$$
\begin{aligned}
& \operatorname{Hom}_{\mathscr{D}}(\Gamma, F \Delta) \\
\cong & \mathbf{h} \Gamma \rightarrow \mathbf{h} F \Delta \\
\cong & \mathbf{h} \Gamma \rightarrow F_{?} \mathbf{h} \Delta \\
\cong & F^{\circ} \mathbf{h} \Gamma \rightarrow \mathbf{h} \Delta \\
= & \operatorname{Hom}_{\mathscr{D}}(\Delta,-) \rightarrow \operatorname{Hom}_{\mathscr{D}}(\Gamma, F-)
\end{aligned}
$$

This is a right-relative adjunction: $F^{\circ} \mathbf{h} \dashv_{\mathrm{h}} F$

$$
\begin{aligned}
& \quad \frac{\mathbf{h} \Gamma, \overline{\mathbf{Q}}_{\mu} \vdash t:\langle\mathbf{h} \mid T\rangle @ \operatorname{Copsh}(\mathscr{C})}{\Gamma \vdash \bmod _{\mu}^{\mathbf{h}} t:\langle\mu \mid T\rangle @ \mathscr{D}} \\
& \text { where } \llbracket \overline{\mathbf{Q}}_{\mu} \rrbracket=\llbracket \mu \rrbracket^{\circ}
\end{aligned}
$$

As of this point, things are going downhill.

Thoughts \& ideas appreciated.

So surely, h is well-behaved?

$$
\frac{\mathbf{h} \Gamma, \overline{\boldsymbol{Q}}_{\mu} \vdash t:\langle\mathbf{h} \mid T\rangle}{\Gamma \vdash \bmod _{\mu}^{\mathrm{h}} t:\langle\mu \mid T\rangle}
$$

To use a variable:

In non-pathological situations:

we need

- \mathbf{h} is never a DRA,
- h never preserves limits,
$\mu^{\circ} \mathbf{h} \nu \rightarrow \mathbf{h}$
$\langle\mathbf{h} \mid A \times B\rangle \xrightarrow{\neq}\langle\mathbf{h} \mid A\rangle \times\langle\mathbf{h} \mid B\rangle$
\mathbf{h} is an MTT-unsupportive sediment.

which is clean.

$$
\frac{\mathbf{h} \Gamma, \overline{\mathbf{\Xi}}_{\mu} \vdash t:\langle\mathbf{h} \mid T\rangle}{\Gamma \vdash \bmod _{\mu}^{\mathbf{h}} t:\langle\mu \mid T\rangle}
$$

To use a variable:

In non-pathological situations:

we need

- \mathbf{h} is never a DRA,
- \mathbf{h} never preserves limits,

$$
\langle\mathbf{h} \mid A \times B\rangle \xrightarrow{\neq}\langle\mathbf{h} \mid A\rangle \times\langle\mathbf{h} \mid B\rangle
$$

- h is never applicative.
$\langle\mathbf{h} \mid A\rangle \times\langle\mathbf{h} \mid A \rightarrow C\rangle \rightarrow\langle\mathbf{h} \mid A \times(A \rightarrow C)\rangle$

$$
\frac{\mathbf{h} \Gamma, \overline{\boldsymbol{O}}_{\mu} \vdash t:\langle\mathbf{h} \mid T\rangle}{\Gamma \vdash \bmod _{\mu}^{\mathbf{h}} t:\langle\mu \mid T\rangle}
$$

To use a variable:

In non-pathological situations:

```
we need
```

- \mathbf{h} is never a DRA,
- \mathbf{h} never preserves limits,

$$
\langle\mathbf{h} \mid A \times B\rangle \xrightarrow{\neq}\langle\mathbf{h} \mid A\rangle \times\langle\mathbf{h} \mid B\rangle
$$

- \mathbf{h} is never applicative.

$$
\langle\mathbf{h} \mid A\rangle \times\langle\mathbf{h} \mid A \rightarrow C\rangle \rightarrow\langle\mathbf{h} \mid A \times(A \rightarrow C)\rangle
$$

$$
\frac{\mathbf{h} \Gamma, \overline{\mathbf{\Xi}}_{\mu} \vdash t:\langle\mathbf{h} \mid T\rangle}{\Gamma \vdash \bmod _{\mu}^{\mathbf{h}} t:\langle\mu \mid T\rangle}
$$

To use a variable:

In non-pathological situations:

- \mathbf{h} is never a DRA,
- \mathbf{h} never preserves limits,

$$
\langle\mathbf{h} \mid A \times B\rangle \xrightarrow{\neq}\langle\mathbf{h} \mid A\rangle \times\langle\mathbf{h} \mid B\rangle
$$

- \mathbf{h} is never applicative.

$$
\langle\mathbf{h} \mid A\rangle \times\langle\mathbf{h} \mid A \rightarrow C\rangle \rightarrow\langle\mathbf{h} \mid A \times(A \rightarrow C)\rangle
$$

$\leadsto \mathbf{h}$ is an MTT-unsupportive sediment.

$$
\frac{\mathbf{h} \Gamma, \overline{\mathbf{\Xi}}_{\mu} \vdash t:\langle\mathbf{h} \mid T\rangle}{\Gamma \vdash \bmod _{\mu}^{\mathbf{h}} t:\langle\mu \mid T\rangle}
$$

To use a variable:

$$
\frac{\mathbf{h}(\Gamma, v \mid x: T), \overline{\mathbf{Q}}_{\mu} \vdash ?:\langle\mathbf{h} \mid T\rangle}{\Gamma, v \mid x: T \vdash \bmod _{\mu}^{h} ?:\langle\mu \mid T\rangle}
$$

In non-pathological situations:

- \mathbf{h} is never a DRA,
- \mathbf{h} never preserves limits,

$$
\langle\mathbf{h} \mid A \times B\rangle \xrightarrow{\nexists}\langle\mathbf{h} \mid A\rangle \times\langle\mathbf{h} \mid B\rangle
$$

- \mathbf{h} is never applicative.

$$
\langle\mathbf{h} \mid A\rangle \times\langle\mathbf{h} \mid A \rightarrow C\rangle \rightarrow\langle\mathbf{h} \mid A \times(A \rightarrow C)\rangle
$$

$\leadsto \mathbf{h}$ is an MTT-unsupportive sediment.

$$
\frac{\mathbf{h} \Gamma, \overline{\mathbf{\Xi}}_{\mu} \vdash t:\langle\mathbf{h} \mid T\rangle}{\Gamma \vdash \bmod _{\mu}^{\mathbf{h}} t:\langle\mu \mid T\rangle}
$$

In non-pathological situations:

- \mathbf{h} is never a DRA,
- \mathbf{h} never preserves limits,

$$
\langle\mathbf{h} \mid A \times B\rangle \xrightarrow{\nexists}\langle\mathbf{h} \mid A\rangle \times\langle\mathbf{h} \mid B\rangle
$$

- \mathbf{h} is never applicative.

$$
\langle\mathbf{h} \mid A\rangle \times\langle\mathbf{h} \mid A \rightarrow C\rangle \nrightarrow\langle\mathbf{h} \mid A \times(A \rightarrow C)\rangle
$$

$\sim \mathbf{h}$ is an MTT-unsupportive sediment.

To use a variable:

$$
\frac{\mathbf{h}(\Gamma, v \mid x: T), \overline{\mathbf{Q}}_{\mu} \vdash ?:\langle\mathbf{h} \mid T\rangle}{\Gamma, v \mid x: T \vdash \bmod _{\mu}^{h} ?:\langle\mu \mid T\rangle}
$$

we need

$$
\begin{aligned}
& \mu^{\circ} \mathbf{h} v \rightarrow \mathbf{h} \\
\cong & \mathbf{h} v \rightarrow \mu_{?} \mathbf{h} \\
\cong & \mathbf{h} v \rightarrow \mathbf{h} \mu \\
\cong & v \rightarrow \mu,
\end{aligned}
$$

which is clean.

So surely, Copsh($\mathscr{C})$ is well-behaved?
$\operatorname{Copsh}(\mathscr{C})$ is a CwF.
Giraud CwF structure [Gir65, BCMMPS20]
Every category \mathscr{D} with \top and pullbacks is a CwF

```
However, Copsh(\mathscr{C}) has:
    * No П-types!
    So no library functions!
Possible solution:
Move to Psh(Copsh(\mathscr{C})).
() This is 2LTT for Copsh(\mathscr{C )}
```

So surely, Copsh($\mathscr{C})$ is well-behaved?
$\operatorname{Copsh}(\mathscr{C})$ is a CwF .
Giraud CwF structure [Gir65, BCMMPS20]
Every category \mathscr{D} with \top and pullbacks is a CwF:

- Contexts and substitutions: \mathscr{D}
- $T \in \operatorname{Ty}(\Gamma):$

```
However, Copsh(\mathscr{C}) has:
    * No П-types!
    So no library functions!
- Context extension

So surely, Copsh( \(\mathscr{C})\) is well-behaved?
\(\operatorname{Copsh}(\mathscr{C})\) is a CwF .
Giraud CwF structure [Gir65, BCMMPS20]
Every category \(\mathscr{D}\) with \(\top\) and pullbacks is a CwF:
- Contexts and substitutions: \(\mathscr{D}\)
- \(T \in \operatorname{Ty}(\Gamma)\) :


However, Copsh( \(\mathscr{C})\) has:
© No П-types
So no library functions!
© No universe?

Possible solution: Move to Psh(Copsh(C))
(): This is 2LTT for \(\operatorname{Copsh}(\mathscr{C})\),

So surely, Copsh( \(\mathscr{C})\) is well-behaved?
\(\operatorname{Copsh}(\mathscr{C})\) is a CwF .
Giraud CwF structure [Gir65, BCMMPS20]
Every category \(\mathscr{D}\) with \(\top\) and pullbacks is a CwF:
- Contexts and substitutions: \(\mathscr{D}\)
- \(T \in \operatorname{Ty}(\Gamma):\)

- Substitution

\section*{- Context extension}
(). This is 2LTT for \(\operatorname{Copsh}(\mathscr{C})\).

So surely, Copsh( \(\mathscr{C})\) is well-behaved?
\(\operatorname{Copsh}(\mathscr{C})\) is a CwF .
Giraud CwF structure [Gir65, BCMMPS20]
Every category \(\mathscr{D}\) with \(\top\) and pullbacks is a CwF:
- Contexts and substitutions: \(\mathscr{D}\)
- \(T \in \operatorname{Ty}(\Gamma)\) :


Possible solution: Move to Psh(Copsh(C))
() This is 2 LTT for \(\operatorname{Copsh}(\mathscr{C})\).
- Substitution
- Context extension

So surely, Copsh( \(\mathscr{C})\) is well-behaved?

Copsh \((\mathscr{C})\) is a CwF.
Giraud CwF structure [Gir65, BCMMPS20]
Every category \(\mathscr{D}\) with \(\top\) and pullbacks is a CwF:
- Contexts and substitutions: \(\mathscr{D}\)
- \(T \in \operatorname{Ty}(\Gamma)\) :

- Substitution
- Context extension

However, \(\operatorname{Copsh}(\mathscr{C})\) has:
, No П-types!
So no library functions!
(2) No universe?

Possible solution: Move to Psh(Copsh(C) )
(). This is 2LTT for \(\operatorname{Copsh}(\mathscr{C})\)

So surely, Copsh( \(\mathscr{C})\) is well-behaved?
\(\operatorname{Copsh}(\mathscr{C})\) is a CwF .
Giraud CwF structure [Gir65, BCMMPS20]
Every category \(\mathscr{D}\) with \(\top\) and pullbacks is a CwF:
- Contexts and substitutions: \(\mathscr{D}\)
- \(T \in \operatorname{Ty}(\Gamma):\)

- Substitution
- Context extension

However, \(\operatorname{Copsh}(\mathscr{C})\) has:
, No П-types!
So no library functions!
: ) (We have co-exponentials.) \(\left(A_{E} \rightarrow B\right) \cong(A \rightarrow E \uplus B)\)
(2) No universe?

\section*{Possible solution} Move to Psh(Copsh( \(C)\) )
() This is 2LTT for Copsh( \(\mathscr{C})\)

So surely, Copsh( \(\mathscr{C})\) is well-behaved?
\(\operatorname{Copsh}(\mathscr{C})\) is a CwF .
Giraud CwF structure [Gir65, BCMMPS20]
Every category \(\mathscr{D}\) with \(\top\) and pullbacks is a CwF:
- Contexts and substitutions: \(\mathscr{D}\)
- \(T \in \operatorname{Ty}(\Gamma):\)

- Substitution
- Context extension

However, \(\operatorname{Copsh}(\mathscr{C})\) has:
, No П-types!
So no library functions!
: ) (We have co-exponentials.) \(\left(A_{E} \rightarrow B\right) \cong(A \rightarrow E \uplus B)\)
© No universe?

Possible solution: Move to Psh(Copsh( \(C\) ))
() This is 2LTT for Copsh( \(\mathscr{C})\)

\section*{So surely, Copsh( \(\mathscr{C})\) is well-behaved?}
\(\operatorname{Copsh}(\mathscr{C})\) is a CwF.
Giraud CwF structure [Gir65, BCMMPS20]
Every category \(\mathscr{D}\) with \(\top\) and pullbacks is a CwF:
- Contexts and substitutions: \(\mathscr{D}\)
- \(T \in \operatorname{Ty}(\Gamma):\)

- Substitution
- Context extension

However, \(\operatorname{Copsh}(\mathscr{C})\) has:
© No П-types!
So no library functions!
: ) (We have co-exponentials.)
\[
\left(A_{E} \rightarrow B\right) \cong(A \rightarrow E \uplus B)
\]
© No universe?

Possible solution:
Move to \(\operatorname{Psh}(\operatorname{Copsh}(\mathscr{C}))\).
(Is this getting out of hand?)
(): This is 2LTT for \(\operatorname{Copsh}(\mathscr{C})\)

\section*{So surely, Copsh( \(\mathscr{C})\) is well-behaved?}
\(\operatorname{Copsh}(\mathscr{C})\) is a CwF.
Giraud CwF structure [Gir65, BCMMPS20]
Every category \(\mathscr{D}\) with \(\top\) and pullbacks is a CwF:
- Contexts and substitutions: \(\mathscr{D}\)
- \(T \in \operatorname{Ty}(\Gamma):\)

- Substitution
- Context extension

However, \(\operatorname{Copsh}(\mathscr{C})\) has:
© No П-types!
So no library functions!
: ) (We have co-exponentials.)
\[
\left(A_{E} \rightarrow B\right) \cong(A \rightarrow E \uplus B)
\]
© No universe?

Possible solution:
Move to \(\operatorname{Psh}(\operatorname{Copsh}(\mathscr{C}))\).
(Is this getting out of hand?)
() This is 2LTT for \(\operatorname{Copsh}(\mathscr{C})\). [ACKS17/23]

\section*{We do not always need copresheaves.}

\section*{It doesn't have to be a relative right adjoint along h.}

\(\operatorname{Hom}_{\operatorname{Copsh}(\mathscr{C})}(L d, \mathbf{h} c) \cong \operatorname{Hom}_{\mathscr{D}}(d, R c)\)
\(\operatorname{Hom}_{\mathscr{C}^{\prime}}(L d, J c) \cong \operatorname{Hom}_{\mathscr{D}}(d, R c)\)

\section*{We do not always need copresheaves.}

\section*{It doesn't have to be a relative right adjoint along \(\mathbf{h}\).}

\(\operatorname{Hom}_{\operatorname{Copsh}(\mathscr{C})}(L d, \mathbf{h} c) \cong \operatorname{Hom}_{\mathscr{D}}(d, R c)\)

\(\operatorname{Hom}_{\mathscr{C}^{\prime}}(L d, J c) \cong \operatorname{Hom}_{\mathscr{D}}(d, R c)\)

Container functors \(\subseteq\) PRAs \(\subseteq\) Right multi-adjoints \(\subseteq\) Relative right adjoints


\section*{Right multi-adjoint}
```

PRA without referring to

```

\section*{Relative right adjoint}

\section*{Parametric right adjoint (PRA)}

Functor
such that \(F\)
is right adjoint.

Container functors \(\subseteq\) PRAs \(\subseteq\) Right multi-adjoints \(\subseteq\) Relative right adjoints


\section*{Right multi-adjoint}

\section*{PRA without referring to}

\section*{Relative right adjoint}

\section*{Parametric right adjoint (PRA)}

Functor \(F: \mathscr{C} \rightarrow \mathscr{D}\)
such that \(F^{/ \top}: \mathscr{C} \cong \mathscr{C} / \top \rightarrow \mathscr{D} / F \top\) is right adjoint.

Container functors \(\subseteq\) PRAs \(\subseteq\) Right multi-adjoints \(\subseteq\) Relative right adjoints

Container functor
\(F Y=\Sigma(s: S) .(P s \rightarrow Y)\)

\section*{Right multi-adjoint}

\section*{PRA without referring to}

\section*{Relative right adjoint}

\section*{Parametric right adjoint (PRA)}

Functor \(F: \mathscr{C} \rightarrow \mathscr{D}\)
such that \(F^{/ \top}: \mathscr{C} \cong \mathscr{C} / \top \rightarrow \mathscr{D} / F \top\)
is right adjoint.
\(\operatorname{Hom}_{\mathscr{D}}(X, F Y)\)
\(\cong \Sigma\left(f: \operatorname{Hom}_{\mathscr{D}}(X, F \top)\right) \cdot \operatorname{Hom}_{\mathscr{D} / F \top}\left((X, f), F^{\top} Y\right)\)
\(\cong \Sigma\left(f: \operatorname{Hom}_{\mathscr{D}}(X, F \top)\right) \cdot \operatorname{Hom}_{\mathscr{C}}(L(X, f), Y)\)

\section*{Container functors \(\subseteq\) PRAs \(\subseteq\) Right multi-adjoints \(\subseteq\) Relative right adjoints}

\section*{Container functor}
\[
\begin{aligned}
& F Y=\Sigma(s: S) \cdot(P s \rightarrow Y) \\
& (X \rightarrow F Y) \cong \\
& \quad \Sigma(f: X \rightarrow S) \cdot((x: X) \times P(f x) \rightarrow Y)
\end{aligned}
\]

\section*{Parametric right adjoint (PRA)}

Functor \(F: \mathscr{C} \rightarrow \mathscr{D}\)
such that \(F^{/ \top}: \mathscr{C} \cong \mathscr{C} / \top \rightarrow \mathscr{D} / F \top\)
is right adjoint.

\section*{Right multi-adjoint}

\section*{PRA without referring to}

\section*{Relative right adjoint}
```

$\operatorname{Hom}_{\mathscr{D}}(X, F Y)$
$\cong \Sigma\left(f: \operatorname{Hom}_{\mathscr{D}}(X, F \top)\right) \cdot \operatorname{Hom}_{\mathscr{D} / F \top}\left((X, f), F^{\top} Y\right)$
$\cong \Sigma\left(f: \operatorname{Hom}_{\mathscr{D}}(X, F \top)\right) \cdot \operatorname{Hom}_{\mathscr{C}}(L(X, f), Y)$

```

\section*{Container functors \(\subseteq\) PRAs \(\subseteq\) Right multi-adjoints \(\subseteq\) Relative right adjoints}

\section*{Container functor}
\[
\begin{aligned}
& F Y=\Sigma(s: S) \cdot(P s \rightarrow Y) \\
& (X \rightarrow F Y) \cong \\
& \quad \Sigma(f: X \rightarrow S) \cdot((x: X) \times P(f x) \rightarrow Y)
\end{aligned}
\]

\section*{Parametric right adjoint (PRA)}

Functor \(F: \mathscr{C} \rightarrow \mathscr{D}\)
such that \(F^{/ \top}: \mathscr{C} \cong \mathscr{C} / \top \rightarrow \mathscr{D} / F \top\)
is right adjoint.

\section*{Right multi-adjoint}

PRA without referring to \(T\).

\section*{Relative right adjoint}
\[
\operatorname{Hom}_{\mathscr{C}^{\prime}}(L d, J c) \cong \operatorname{Hom}_{\mathscr{D}}(d, R c)
\]
\(\operatorname{Hom}_{\mathscr{D}}(X, F Y)\)
\(\cong \Sigma\left(f: \operatorname{Hom}_{\mathscr{D}}(X, F \top)\right) \cdot \operatorname{Hom}_{\mathscr{D} / F \top}\left((X, f), F^{\top} Y\right)\)
\(\cong \Sigma\left(f: \operatorname{Hom}_{\mathscr{D}}(X, F \top)\right) \cdot \operatorname{Hom}_{\mathscr{C}}(L(X, f), Y)\)

\section*{Container functors \(\subseteq\) PRAs \(\subseteq\) Right multi-adjoints \(\subseteq\) Relative right adjoints}

\section*{Container functor}
\[
\begin{aligned}
& F Y=\Sigma(s: S) \cdot(P s \rightarrow Y) \\
& (X \rightarrow F Y) \cong \\
& \quad \Sigma(f: X \rightarrow S) \cdot((x: X) \times P(f x) \rightarrow Y)
\end{aligned}
\]

\section*{Parametric right adjoint (PRA)}

Functor \(F: \mathscr{C} \rightarrow \mathscr{D}\)
such that \(F^{/ \top}: \mathscr{C} \cong \mathscr{C} / \top \rightarrow \mathscr{D} / F \top\)
is right adjoint.

\section*{Right multi-adjoint}

PRA without referring to \(T\).

\section*{Relative right adjoint}

\[
\operatorname{Hom}_{\mathscr{C}^{\prime}}(L d, J c) \cong \operatorname{Hom}_{\mathscr{D}}(d, R c)
\]
\(\operatorname{Hom}_{\mathscr{D}}(X, F Y)\)
\(\cong \Sigma\left(f: \operatorname{Hom}_{\mathscr{D}}(X, F \top)\right) \cdot \operatorname{Hom}_{\mathscr{D} / F \top}\left((X, f), F^{/ \top} Y\right)\)
\(\cong \Sigma\left(f: \operatorname{Hom}_{\mathscr{D}}(X, F \top)\right) \cdot \operatorname{Hom}_{\mathscr{C}}(L(X, f), Y)\)

\section*{Container functors \(\subseteq\) PRAs \(\subseteq\) Right multi-adjoints \(\subseteq\) Relative right adjoints}

\section*{Container functor}
\[
\begin{aligned}
& F Y=\Sigma(s: S) \cdot(P s \rightarrow Y) \\
& (X \rightarrow F Y) \cong \\
& \quad \Sigma(f: X \rightarrow S) \cdot((x: X) \times P(f x) \rightarrow Y)
\end{aligned}
\]

\section*{Parametric right adjoint (PRA)}

Functor \(F: \mathscr{C} \rightarrow \mathscr{D}\)
such that \(F^{/ \top}: \mathscr{C} \cong \mathscr{C} / \top \rightarrow \mathscr{D} / F \top\)
is right adjoint.

\section*{Right multi-adjoint}

PRA without referring to \(T\).

\section*{Relative right adjoint}

\[
\operatorname{Hom}_{\mathscr{C}^{\prime}}(L d, J c) \cong \operatorname{Hom}_{\mathscr{D}}(d, R c)
\]
\(\operatorname{Hom}_{\mathscr{D}}(X, F Y)\)
\(\cong \Sigma\left(f: \operatorname{Hom}_{\mathscr{D}}(X, F \top)\right) \cdot \operatorname{Hom}_{\mathscr{D} / F \top}\left((X, f), F^{/ \top} Y\right)\)
\(\cong \Sigma\left(f: \operatorname{Hom}_{\mathscr{D}}(X, F \top)\right) \cdot \operatorname{Hom}_{\mathscr{C}}(L(X, f), Y)\)
\(\cong \operatorname{Hom}_{\operatorname{Cart}(\mathscr{C})}\left(\prod_{f: \operatorname{Hom}_{\mathscr{g}}(X, F \top)}[L(X, f)],[Y]\right)\)

\section*{Container functor}
\(F Y=\Sigma(s: S) .(P s \rightarrow Y)\)

\section*{Parametric right adjoint (PRA)}

\section*{Functor \(F\)}
such that \(F\)
is right adjoint.
\[
\begin{aligned}
& \Gamma \vdash s: S \\
& \Gamma, p: P s \vdash a: A \\
& \Gamma \vdash(s, \lambda p . a): \Sigma(s: S) .(P s \rightarrow A)
\end{aligned}
\]
\(\operatorname{Hom}_{\mathscr{D}}(X, F Y)\)


\section*{Container functor}
\(F Y=\Sigma(s: S) .(P s \rightarrow Y)\)
\[
\begin{aligned}
& \Gamma \vdash s: S \\
& \Gamma, p: P s \vdash a: A \\
& \Gamma \vdash(s, \lambda p \cdot a): \Sigma(s: S) .(P s \rightarrow A)
\end{aligned}
\]

\section*{Parametric right adjoint (PRA)}

Functor \(F: \mathscr{C} \rightarrow \mathscr{D}\)
such that \(F^{\top}: \mathscr{C} \cong \mathscr{C} / \top \rightarrow \mathscr{D} / F \top\) is right adjoint.
```

$\operatorname{Hom}_{\mathscr{D}}(X, F Y)$
$\cong \Sigma\left(f: \operatorname{Hom}_{\mathscr{D}}(X, F \top)\right) \cdot \operatorname{Hom}_{\mathscr{D} / F \top}\left((X, f), F^{/ \top} Y\right)$
$\cong \Sigma\left(f: \operatorname{Hom}_{\mathscr{D}}(X, F \top)\right) \cdot \operatorname{Hom}_{\mathscr{C}}(L(X, f), Y)$
$\cong \operatorname{Hom}_{\operatorname{Cart}(\mathscr{C})}\left(\prod_{f: \operatorname{Hom}_{\mathscr{D}}(X, F \top)}[L(X, f)],[Y]\right)$

```

\section*{Container functor}
\(F Y=\Sigma(s: S) .(P s \rightarrow Y)\)
\[
\begin{aligned}
& \Gamma \vdash s: S \\
& \Gamma, p: P s \vdash a: A \\
& \Gamma \vdash(s, \lambda p . a): \Sigma(s: S) .(P s \rightarrow A)
\end{aligned}
\]

\section*{Parametric right adjoint (PRA)}

Functor \(F: \mathscr{C} \rightarrow \mathscr{D}\)
such that \(F^{\top}: \mathscr{C} \cong \mathscr{C} / \top \rightarrow \mathscr{D} / F \top\) is right adjoint.
\(\operatorname{Hom}_{\mathscr{D}}(X, F Y)\)
\(\cong \Sigma\left(f: \operatorname{Hom}_{\mathscr{D}}(X, F \top)\right) \cdot \operatorname{Hom}_{\mathscr{D} / F \top}\left((X, f), F^{\top} Y\right)\)
\(\cong \Sigma\left(f: \operatorname{Hom}_{\mathscr{D}}(X, F \top)\right) \cdot \operatorname{Hom}_{\mathscr{C}}(L(X, f), Y)\)
\(\cong \operatorname{Hom}_{\operatorname{Cart}(\mathscr{C})}\left(\prod_{f: \operatorname{Hom}_{\mathscr{D}}(X, F \top)}[L(X, f)],[Y]\right)\)


Inspired by, but different from [GCKGB22].

\section*{Container functor}
\(F Y=\Sigma(s: S) .(P s \rightarrow Y)\)
\[
\begin{aligned}
& \Gamma \vdash s: S \\
& \Gamma, p: P s \vdash a: A \\
& \Gamma \vdash(s, \lambda p . a): \Sigma(s: S) .(P s \rightarrow A)
\end{aligned}
\]

\section*{Parametric right adjoint (PRA)}

Functor \(F: \mathscr{C} \rightarrow \mathscr{D}\)
such that \(F^{\top}: \mathscr{C} \cong \mathscr{C} / \top \rightarrow \mathscr{D} / F \top\) is right adjoint.
```

$\operatorname{Hom}_{\mathscr{D}}(X, F Y)$
$\cong \Sigma\left(f: \operatorname{Hom}_{\mathscr{D}}(X, F \top)\right) \cdot \operatorname{Hom}_{\mathscr{D} / F \top}\left((X, f), F^{/ \top} Y\right)$
$\cong \Sigma\left(f: \operatorname{Hom}_{\mathscr{D}}(X, F \top)\right) \cdot \operatorname{Hom}_{\mathscr{C}}(L(X, f), Y)$
$\cong \operatorname{Hom}_{\operatorname{Cart}(\mathscr{C})}\left(\prod_{f: \operatorname{Hom}_{\mathscr{D}}(X, F \top)}[L(X, f)],[Y]\right)$

```


Inspired by, but different from [GCKGB22].

\section*{Container functor}
\(F Y=\Sigma(s: S) .(P s \rightarrow Y)\)
\[
\begin{aligned}
& \Gamma \vdash s: S \\
& \Gamma, p: P s \vdash a: A \\
& \Gamma \vdash(s, \lambda p . a): \Sigma(s: S) .(P s \rightarrow A)
\end{aligned}
\]

\section*{Parametric right adjoint (PRA)}

Functor \(F: \mathscr{C} \rightarrow \mathscr{D}\)
such that \(F^{\top}: \mathscr{C} \cong \mathscr{C} / \top \rightarrow \mathscr{D} / F \top\) is right adjoint.
```

$\operatorname{Hom}_{\mathscr{D}}(X, F Y)$
$\cong \Sigma\left(f: \operatorname{Hom}_{\mathscr{D}}(X, F \top)\right) \cdot \operatorname{Hom}_{\mathscr{D} / F \top}\left((X, f), F^{/ \top} Y\right)$
$\cong \Sigma\left(f: \operatorname{Hom}_{\mathscr{D}}(X, F \top)\right) \cdot \operatorname{Hom}_{\mathscr{C}}(L(X, f), Y)$
$\cong \operatorname{Hom}_{\operatorname{Cart}(\mathscr{C})}\left(\prod_{f: \operatorname{Hom}_{\mathscr{D}}(X, F \top)}[L(X, f)],[Y]\right)$

```
\[
\begin{aligned}
& \Gamma \vdash s:\langle F \mid T\rangle \\
& \Gamma / s \vdash a: A \\
& \Gamma \vdash \bmod _{F}(s, a):\langle F \mid A\rangle
\end{aligned}
\]

Inspired by, but different from [GCKGB22].

\section*{Container functor}
\(F Y=\Sigma(s: S) .(P s \rightarrow Y)\)
\[
\begin{aligned}
& \Gamma \vdash s: S \\
& \Gamma, p: P s \vdash a: A \\
& \Gamma \vdash(s, \lambda p . a): \Sigma(s: S) .(P s \rightarrow A)
\end{aligned}
\]

\section*{Parametric right adjoint (PRA)}

Functor \(F: \mathscr{C} \rightarrow \mathscr{D}\)
such that \(F^{\top}: \mathscr{C} \cong \mathscr{C} / \top \rightarrow \mathscr{D} / F \top\) is right adjoint.
```

$\operatorname{Hom}_{\mathscr{D}}(X, F Y)$
$\cong \Sigma\left(f: \operatorname{Hom}_{\mathscr{D}}(X, F \top)\right) \cdot \operatorname{Hom}_{\mathscr{D} / F \top}\left((X, f), F^{/ \top} Y\right)$
$\cong \Sigma\left(f: \operatorname{Hom}_{\mathscr{D}}(X, F \top)\right) \cdot \operatorname{Hom}_{\mathscr{C}}(L(X, f), Y)$
$\cong \operatorname{Hom}_{\operatorname{Cart}(\mathscr{C})}\left(\prod_{f: \operatorname{Hom}_{\mathscr{D}}(X, F \top)}[L(X, f)],[Y]\right)$

```
\[
\begin{aligned}
& \Gamma \vdash s:\langle F \mid T\rangle \\
& \Gamma / s \vdash a: A \\
& \Gamma \vdash \bmod _{F}(s, a):\langle F \mid A\rangle
\end{aligned}
\]

Inspired by, but different from [GCKGB22].

\section*{Conclusion}

We want MTT for non-right-adjoint modalities:
- Shulman has a (categorified) syntactic solution for limit-preserving modalities.
- There may be a semantic solution via \(\operatorname{Copsh}(\mathscr{C})\) or \(\operatorname{Psh}(\operatorname{Copsh}(\mathscr{C}))\).
- We lack guidance from relevant examples (most examples are at least PRAs).
- Unclear if usable.
- Does anyone need this generality?

Thanks!

Questions?

\section*{Conclusion}

We want MTT for non-right-adjoint modalities:
- Shulman has a (categorified) syntactic solution for limit-preserving modalities.
- There may be a semantic solution via \(\operatorname{Copsh}(\mathscr{C})\) or \(\operatorname{Psh}(\operatorname{Copsh}(\mathscr{C}))\).
- We lack guidance from relevant examples (most examples are at least PRAs).
- Unclear if usable.
- Does anyone need this generality?

\section*{Thanks!}

\section*{Conclusion}

We want MTT for non-right-adjoint modalities:
- Shulman has a (categorified) syntactic solution for limit-preserving modalities.
- There may be a semantic solution via \(\operatorname{Copsh}(\mathscr{C})\) or \(\operatorname{Psh}(\operatorname{Copsh}(\mathscr{C}))\).
- We lack guidance from relevant examples (most examples are at least PRAs).
- Unclear if usable.
- Does anyone need this generality?

\section*{Thanks!}

\section*{Conclusion}

We want MTT for non-right-adjoint modalities:
- Shulman has a (categorified) syntactic solution for limit-preserving modalities.
- There may be a semantic solution via \(\operatorname{Copsh}(\mathscr{C})\) or \(\operatorname{Psh}(\operatorname{Copsh}(\mathscr{C}))\).
- We lack guidance from relevant examples (most examples are at least PRAs).
- Unclear if usable.
- Does anyone need this generality?

\section*{Thanks!}

\section*{Conclusion}

We want MTT for non-right-adjoint modalities:
- Shulman has a (categorified) syntactic solution for limit-preserving modalities.
- There may be a semantic solution via \(\operatorname{Copsh}(\mathscr{C})\) or \(\operatorname{Psh}(\operatorname{Copsh}(\mathscr{C}))\).
- We lack guidance from relevant examples (most examples are at least PRAs).
- Unclear if usable.
- Does anyone need this generality?

Thanks!

\section*{Questions?}
[ACKS17/23] Danil Annenkov, Paolo Capriotti, Nicolai Kraus, Christian Sattler: Two-Level Type Theory and Applications, https://arxiv.org/abs/1705.03307
[BCMMPS20] Lars Birkedal, Ranald Clouston, Bassel Mannaa, Rasmus Ejlers Møgelberg, Andrew M. Pitts, Bas Spitters: Modal Dependent Type Theory and Dependent Right Adjoints,
https://doi.org/10.1017/S0960129519000197
[GCKGB22] Daniel Gratzer, Evan Cavallo, G. A. Kavvos, Adrien Guatto, Lars Birkedal: Modalities and Parametric Adjoints,
```

https://doi.org/10.1017/S0960129519000197

```
[Shu23] Michael Shulman: Semantics of multimodal adjoint type theory, https://arxiv.org/abs/2303.02572```


[^0]:    (2) $\Rightarrow$ We can still internally prove that $\langle\mu \mid-\rangle$ preserves limits. This is also assumed in the mode

