Computational Proof Theory: Transforming
Proofs using Automated Reasoning

David M. Cerna
EuroProofNet Summer School on Al for Reasoning and
Processing of Mathematics

June 25t 2024

Czech Academy ’
of Sciences

slide 1/67

Introduce automated reasoning and the resolution calculus

Completeness of the resolution calculus
the Sequent calculus

Cut-elimination

vVvYyyvyy

Eliminating cuts using resolution

slide 2/67

Automated Theorem Proving

Alexander Leitsch

The Resolution
Calculus

» Material based on “The Resolution Calculus”
by Alexander Leitsch.

slide 3/67

Automated Theorem Proving

» In the most basic sense, automated provers provide a proof
that a statement follows from a particular theory T.

» For classical propositional logic, such a prover can decide if
the statement follows from T.

» For classical first-order logic (FOL), a prover can only be
guaranteed to find a proof if the statement follows from T.

» One can imagine an automated prover which exhaustively
applies the rules of a particular complete calculus for T until a
proof is constructed.

» For FOL there seem to be too many degrees of freedom, i.e.
quantifier instantiations .

slide 4/67

The Resolution Calculus

» Of the variety of approaches to automated reasoning:

» the tableau calculus,
» the connection method,

» we will focus on the the resolution calculus.

v

It is the most commonly used method for theorem proving.

P In its most basic form it consist of a single rule:

AV C AV =D
Ao VvV No

Res

» where Co = Do
Co,—Co & Ao, and Do,—Do & Ao
» This is (almost) enough for a complete proof system for FOL.

v

slide 5/67

Basic principle of Resolution

» AV C and A’V =D are disjunctions of literals.
> we will refer to them as clauses.

» C and D are literals which may be equated by an appropriate
substitution of the free variables.

» o is a unifier of the two literals.

fFOGy) x =y} = fly, x){x—y}

» Essentially, if a set of clauses is unsatisfiable resolution can be
used to provide a proof of unsatisfiability.
> Note: if a formula is valid, then its negation is unsatisfiable.

» Any FOL formula may be translated to a set of clauses.

slide 6/67

Clausal Form

> Note: translating a FOL formula to a set of clauses can be
done in a satisfiability preserving way.

» Enough for our goal.

» We assume FOL formulas are constructed using the logic
connectives {3,V, A, V, —}.
> First step to translation to Negation normal form nnf(F):
> If F=-=Qx p(x) for Q € {3,V} then
nnf(F) = @x nnf(—yp(x))
> If F == 0O for Oe {A,V} then
nnf(F) = nnf(=¢(x)) O nnf(=(x))
» If F = =P for an atom P then nnf(F) = =P.

> The goal is to push negation to the literals.

slide 7/67

Clausal Form

> After translation to nnf, quantifiers may be prenexified.
> Move quantifier to the outer most scope (without switching
order)

> Next we can skolemize the the 3 quantifiers.

» Confusing? Which quantifier to skolemize depends on the
context. (Sometimes called Herbrandization)

» Resolution is a refutation calculus, 3 quantifiers denote
arbitrary terms (Strong quantifiers).

» Skolemization?

» Semantically valid syntax extension based on the quantifier
structure (not unique!)

Vx3yp(x,y) vV Vw3rg(w,r)
Vx3yVw3r(p(x,y)Vaq(w,r)) VYw3rVx3dy(p(x,y)Vaq(w,r))

VxYw(p(x, a)Vg(w, f(x,w))) YwVx(p(x, f(w,x))Vq(w, a))

slide 8/67

Clausal Form

» Skolemization can be done without prenexing.
(More efficient!)

» These transformations result in a formula of the form
Vxq - Vxp F

where F is quantifier-free.

P At this point the quantifiers can be removed as variables in
different clauses can be treated independently.

» Now we can cover the whole process to CNF.

slide 9/67

Translation to clausal form

» Consider F =
Vx3y(P(x,y) AVuVv(P(u,v)—R(u)))—VzR(z)
» Remove implications
—(Vx3Jy(P(x,y) AVuVv(=P(u,v)VR(u))))VVzR(z)
» Negate the formula
Vx3y(P(x,y) AVuVv(=P(u,v)V R(u)))A—VzR(z)
» Convert to nnf

Vx3y(P(x,y) AVuvv(=P(u,v)V R(u))) A 3z=R(z)

slide 10/67

Translation to clausal form

> Prenex (Not entirely necessary)
32 3yYudv(P(x, y) A (=P(u,v) V R(u)) A =R(z))
> Skolemize
VXV uv(P(x, F(x)) A (=P(u,v) V R(t)) A —R(a))
> As clause set
{P(x, f(x)) , ~P(u,v) vV R(u) , —R(a)}

» Notice it is unsatisfiable.

slide 11/67

Towards Completeness of Resolution

» We have simplified the syntactic structure of FOL formula.

» However, to show that a formula is unsatisfiable, we still need
to show that no interpretation satisfies it.

» There are uncountably infinite interpretations.

» We restrict ourselves to a type of interpretation which is
representative of the entire set of interpretations.

slide 12/67

Herbrand Universe

» Let C be a finite set of clauses.

» CS(C) and FS(C) denote the constant symbols and function
symbols occuring in C, respectively.

_ [as5(C) GS(O)#0
HO_{ {a} IfCS(C)=10

Hi = Hi—1 U{f(t1, - ta)|f € FS(C) , t1, -ty € Hi—1}
H(C) = U2, Hi.

» We refer to H(C) as the Herbrand universe of C.

slide 13/67

Herbrand Universe

» Consider the clause set
{(=P(x) v P(f(x))) » P(h(x,x)), (=P(h(u,v)) VvV -Q(v))}

Ho = {a}
Hy ={a,f(a), h(a,a)}
H, = {a, f(a), f(f(a)), f(h(a,a)), h(a,a), h(f(a),a), h(a, f(a))
h(f(a), f(a)), h(f(a), h(a, a)), h(h(a, a), f(a)), h(h(a, a), h(a, a)) }
» Essentially, it is the set of terms constructable from the
symbols occurring in the clause set.
» Using the Herbrand universe we can construct a Herbrand

interpretation.

» An interpretation with domain H(C) and interpretation
function mapping the constructors to themselves.

slide 14/67

H-interpretation correspondence

» We will denote interpretations by a triple (D, ®, /) where D is
the domain, ® interpretation function, and / : V — H(C) the
environment.

» We associate with each interpretation (D, ®, /) a function
w : H(C) — D which is faithful to the construction of the
Herbrand universe.

» A corresponding H-interpretation (H(C), ®, J) is an
H-interpretation with the following condition on ®4:

Ou(P)(t1, -+ s ta) = ®(P)(w(t1), - -+ ,w(tn))

» for all P € PS(C) and t; € H(C)
» PS(C) denotes the predicate symbols of C.

slide 15/67

Restriction to H-Models

> A set of clauses C is satisfiable iff it has an H-Model.

« If C has an H-Model then it is trivially satisfiable.
— we can instead consider:
If C does not have an H-model then it is unsatisfiable.

» This implies that all H-interpretations falsify C.

» For any interpretation we can construct a corresponding
H-interpretation.

> We need to show that reversing this construction preserves
falsifiability.

> There is a d € C which is falsified by the H-Model. In can be
shown by induction over term depth that a ground
substitution of the terms within the clause exists which
coincides with the H-models semantic interpretation.

» The rest follows from the construction of a corresponding
H-interpretation.

slide 16/67

Semantic Trees

» The restriction to H-Models depends on grounding the terms
occurring in C.

» For a given clause set C and Herbrand universe H(C) we can
construct a so called Semantic tree containing partial truth

assignments of the predicates occurring in C.
[]

P(fty \P(f(a))

Q(f(a))/ \Q(f(a)) Q(f(a))/ \Q(f(a))

P Every node can be expanded by a positive and negative edge.

» The same symbols and tuple of terms is used on each branch
at each expansion step.

» Same expansion step cannot be repeated.

slide 17/67

Semantic Trees

P These are not a semantic trees:
P(a, a)/ * YP(;J7 a)
. mwﬁymm»

P(f(a))/ * \P(f(a))
)/ \cera) P(Fa)/ \P(F(@)

slide 18/67

Semantic Trees

| 2
>
>
>

A complete semantic tree can be built iteratively.
Order the predicate symbols of C and terms of H(C).
then continuously expand with respect to the order.

After a number of expansion steps a branch may contain a
ground instance which falsifies a clause.

v

such nodes of the tree are referred to as failure nodes.

v

failure nodes are not expanded.

> If every branch ends in a failure node, then the tree is closed.

slide 19/67

Semantic Trees

a/ \3(3 ,a)
/ \ / \
P(a,f(a))/\ﬂp(% f(a))

{P(x, f(x)), =P(u,v) VR(u) , ~R(a)}

slide 20/67

Semantic trees and unsatisfiably

> A set of clauses C is unsatisfiable iff its semantic tree T is
closed.

+ T tells us how to build a falsifying H-models.
— Each branch represents an H-model. We know no H-model
satisfies C thus T must eventually close.
» A closed semantic tree T for a set of clauses C is finite.

e For T to be infinite, being that it is finitely branching, there
would have to be an infinite path. But that contradicts the
definition of failure node.

» This gives us a crude automated theorem prover, but it is
complete.

slide 21/67

Semantic Trees and Ground Instances

» Notice that a closed semantic tree T of a set of clauses C

proves unsatisfiably by collecting a set of ground instances of
the clauses of C.

This set of ground instances is enough to prove unsatisfiably
of C.
This observation provides a variant of Herbrand's theorem
(Soon!)
A set of clauses C is unsatisfiable iff there exists a finite
unsatisfiable set of clauses C’ such that C’ consists of ground
instances of clauses in C.
The method of Davis and Putnam is based on saturation of
sets of ground instances of clauses.

Resolution improves on this and earlier methods by avoiding
the search for ground instances.

slide 22/67

Propositional (Ground) Resolution

» Let us consider resolution without substitution first:
AV C A'v-C
AV A
» Soundness of the rule is easy to observe:
if (AV C)A(A"V =C)is true then A vV A’ is true.
> However, an additional step is needed in some cases:
cvC_C -Cv-C Res
Cc v =C
» (CV C)A(—CV~—C)is pretty unsatisfiable.
» To avoid this issue we need to add a contraction rule (can be
built into the resolution rule).

Res

» Often referred to as factoring.

slide 23/67

Completeness of Propositional Resolution

BC
SC

If C is an unsatisfiable set of propositional clauses then there
exists a refutation of C.

We can prove this statement by induction on the height of the
semantic tree T of C
Note that H(C) is trivial for a propositional clause set.

If the T has height 1 then C contains L.
Assume x holds for all clause sets C’ whose tree T’ is of

height n, we show that the statement holds for C whose tree
T is of height n+ 1.

Notice that nodes at level n connect to failure nodes at level
n+ 1 through edges labeled by complementary literals.

Let C; V P and G, V =P be the clauses corresponding to the
failure nodes.

slide 24/67

Completeness of Propositional Resolution

» Using resolution and contraction we can build the clause set
CuU{C Vv G} where
> (| Vv (G is equivalent C; V G, after contraction.
» T’ is equivalent to T with the failure nodes corresponding to
Ci VP and GV =P removed.
» The node at level n is now a failure node for C; v CJ.

» Repeating this process for all nodes at level n we get a
semantic tree of height n.

> Hint: Useless edges may have to be removed.

» This can be easily generalized from propositional (ground)
clause sets to first-order.

» The branches need only contain instances of the clauses in C.

P> A closed tree can always be grounded.

slide 25/67

More General Resolution

» Consider the clause set:
P(Xa f(y))\/P(Xa f(X)) ; —\P(X,y)\/P(y,X) 5

_'P(Xay) \% P(f(X)ay) ’ ﬁP(f(f(X)),X)
» It can be refuted as follows:

PAYIVPLF) Pap)V Py |
P(F().) ~P(.y) ¥ PF().)
PUF(FC0).)

RE PR

€
» Finding the substitution is similar to the search for ground

instantiations.

> However, there is a special type of unifier which allows
resolution to be more efficient than ground instantiation
methods.

slide 26/67

Generality Order

» There are may be infinitely many unifiers of two terms.

» We may order the unifiers by generality in the following sense.
» We say o1 is more general than o2, 01 < 09, if 017 = 02.

» For example,

fFO){x < g(a,a), y < a} = f(g(y,a)){x < g(a,a), y < a}

fOx < g(y,a)} = flgly,a){x + g(a a)}
» Notice that

x<gly,a), y<yHy+at ={x<+glaa), y+ a}

> Thus, {x < g(y,a)} < {x + g(a,a) , y « a}

slide 27/67

Most General Unifier

» A unifier o is an mgu if for all unifiers 7, 0 <71

» For first-order term expressions if two terms are unifiable then
there is a unique mgu, up to variable renaming, unifying them.

» {x < g(y,a)} is the mgu for the previous example.
> It is decidable if two first-order term expressions have an mgu.

» Computing the mgu naively requires exponential time, but it
is computable in nearly linear.

> See the Martelli-Montanari Algorithm for unification.

slide 28/67

Constructing MGUs

» By diff(t1, t2) we denote the pairs of subterms (with
matching positions) which do not match when decomposing
t; and t, top-down.

» For example
diff(g(x, f(a, b), h(b)),g(f(a,b), f(y, b), f(b,b))) contains

(x,f(a;b)), (a,y) , (h(b), (b, b))

» Notice that (h(b), f(b, b)) cannot be unified and thus, these
two term are not unifiable.

» Consider diff(x, f(a,x)) = {(x,f(a,x))}
» This seems unifiable, but (x, f(a, x)) implies our mgu ought
to contain the substitution {x < f(a, x)}.

x{x < f(a,x)} = f(a,x) # f(a,f(a,x)) = f(a,x){x < f(a,x)}

» Results in an infinite loop.

slide 29/67

Constructing MGUs

» Thus, unification fails if diff(t1, t) contains
» terms with different head symbols.
> a pair of the form (x, t[x]).

Require: 0 = Id
while diff (ty0, tao) # () do
if (x,t[x]), (f(%),&(3)) € diff(ti0, t20) then
return Fail
else
Select (s, t) € diff (ti0, tao)
if s is a variable then
o =o0{s+ t}
else
o=ocft« s}
end if
end if
end while
return o

» Exponential behavior occurs because the substitution may
apply to itself, i.e. can build full binary trees.

slide 30/67

and Resolution

> We can lift MGU to the clausal level by lifting the generality
order to clauses:

e Let C,D be clauses and C’, D’ clauses resulting from C, D by
contraction. Then C < D implies C' < D’.

e Let C,D, C’, D’ be clauses such that C< C' and D < D'. If
E’ is the result of resolving C’ and D’ then there exists a
resolvent E of C and D with E < E’.

» This statement is usually referred to as the lifting lemma.

> We can further generalize the lemma to full resolution
derivations implying that we only need to consider MGUs
when applying resolution.

slide 31/67

Lifting Theorem

Theorem

Let C be a set of clauses and C’ be a set of instances of clauses in
C. Let A be a resolution deduction from C'. Then there exists a
resolution deduction I from C such that < A.

Theorem (completeness)

If C is an unsatisfiable set of clauses then there exists an resolution
refutation of C.

Proof.
We can lift ground resolution refutations to non-ground resolution
refutation by the lifting theorem. O

slide 32/67

How big can refutations get?

» Refutations can be non-elementary in the size of the formula.
e That is faster growing than f(0) =1 , f(n+1) = 2f("

» Statman constructed a sequence of clause sets, using
Combinatory logic, whose refutations grow faster than f(n) .

In “Lower bounds on Herbrand’'s theorem”.

» Here is an example of a simple but hard to refute clause set:
E(x,a)V E(x,b)V E(x,c) , mE(x,a)V —=E(y,a)V L(s(y), x)

—E(x, b)V-E(y, b)VL(s(y),x), =E(x,c)V-E(y, c)VL(s(y),x)
—L(m(x,y),z) V L(x,z) , =L(m(x,y),z) V L(y,z) , L(x,x)
» Requires the derivation of 100s of clauses to refute.
» Many interesting problems can be found at

http://www.tptp.org/

slide 33/67

 http://www.tptp.org/

Introduce automated reasoning and the resolution calculus

Completeness of the resolution calculus
the Sequent calculus

Cut-elimination

vVvYyyvyy

Eliminating cuts using resolution

slide 34/67

Background: Gentzen's Sequent Calculus

» The sequent calculus applies inferences to objects referred to
as sequents A F 1, where A and [1 are multisets of
well-formed formula. Chaining inferences forms proof trees.

» Semantically, a sequent means given A we may derive T1.

> Note that, this interpretation implies that A is essentially a
conjunction of formula and I is a disjunction.

» The sequent calculus inferences are as follows:

Axiom Inferences

AF A X

slide 35/67

Gentzen's Sequent Calculus

Structural Inferences

rea r=a .,
D.r-aA Y™ r-AD
D.D.THA r-a0D
DTFA © T~ A,D

r-A,C C A
LI EA A

cut

slide 36/67

Gentzen's Sequent Calculus

Logical Inferences

r-a,0 DIrEA - CTHA
DrFa " r-a,-D " Ccabrra M

D.TFA r-A,C F-A,D
Azl Vir Vir

CADTFA FFA,CVD FFA CVD
rFAC THAD CTFA DTFA
FEA CAD ! CVDTFA Vi
C.r-a,0 rFAC DrEA

rFAC—D " CSDTFA

slide 37/67

Gentzen's Sequent Calculus

Quantifier Inferences

rFAF@) Fo.rea
FEAVXF(x) VxF(x),TFA "
TEAF() Fla)Tra
FEAIxF(x) IF(),TFA

» Note that for 3:/and V : r & may not occur in I or A. These
rules are referred to as strong quantification, i.e. require an
eigenvariable, the other rules are referred to as weak.

slide 38/67

Simple Sequent Calculus Proof

P(a) F P(a)
P(a) = P(a), P(B)

F P(a), P(a) = P(B)
F P(a), Vy(P(a) = P(y))

F P(a),3xVy(P(x) — P(y))
P(a) F P(a), 3xVy(P(x) = P(y))

F P(a) = P(a), IxVy(P(x) = P(y))
FVy(P(a) = P(y)), 3xVy(P(x) = P(y)) -
= IxVy(P(x) = P(y)), 3IxVy(P(x) = P(y)) _
F 3IxVy(P(x) — P(y))

w:r
= :r
v

or
3:

r
w

/
N
V.

r

slide 39/67

Sequent Calculus Proof With Cut

PUER) - P(f(A) P@) - B
=Plha) - =P(Ro) , PR PUE(A) - PEA)), ~PlRa) PG) - [, BE)
P) - B BB - FG)

T SPAYRA)) PV PUEA)) P PUEA) EERRNRGE) - BE B P0),)
e EEm PRI PR | e mwwD o - R0
-P(A) - -7‘ P((A)) - U (P VP())) - =P(Aa) v P(f(A) [EREINIREE) FEREMREEN, P:) - P((:)
P(A) - RIS, RGN P(F(A) - UGN, R (PR V() - ¥x (5P VP(F()). [IERENRHG)) FREEEMREEN . °¢) - P(()
~P(A) - ERURIN P(F(%) - RSB [FRSPEMRIG) . FRSREMBEG . ~¢) - P((:) P(*e)) = P(*a))
)P - R, S EERENRE) - () PO - 6)
PP - R i), R, 7 -)
¥ (<P(x) v P(f(x))) _‘” Pf(a) v P((a)) , EREENREEN . P¢) - P(7()
% (<P v P(1()) , EEREMREE . P¢) - P(°6) '

R —
(PR VP(1(x) - ERERENREEN

wx(=P(x) VP(f()) , ¥x(<P(x) VP(f(x))) , Pla) F P(F*@))

(P VP(T(), PR - (@)

» Green formulas denote cuts and their ancestors.
» The cut rule is used in introduce auxiliary arguments

(Lemmas) into a proof.
» That is concepts external to the statement being proven.

slide 40/67

Proof without Cut

- ax
P(a) - P(a)
— a

—P(a), P(a) | P(f(2)) - P(f(2))

vl

—P(a) v P(f(2)), P(a) - P(f(2))
vl

W (=P(x) v P(f(x))), P(a) + P(f(a))
-l

~P(f(2)), ¥x(=P() v P(f())) , P(a) i P(f’(a)) F P(f*(a))

vl

-P(f(a)) v P(f(a)) , ¥x (~P(x) v P(f(x))) , P(a) I P(f¥(a))

vl
¥x(=P(x) V P(f(x))) , ¥ (=P(x) v P((x)) , P(a) - P(*(a))
2

Vx (=P(x) v P(f(x)), P(2) I P((a))

» Proofs without cuts are referred to as analytic proofs.
» Every formula is a subformula of the end sequent.
» Observe that cut is the only rule that removes formula from
the sequent.

» If one could derive L using the sequent calculus, then it would

involve cut.
slide 41/67

Eliminating Cut:Proof

» Gentzen's Hauptsatz: cuts can be eliminated.
» We assume proofs have been Regularized.
» Unique eigenvariable for each Strong quantifier.

> Additionally, a generalization of the cut rule is used.

r-AC CTFA

F A mix

where [" and A’ are equivalent to [and A but with every
instance of C removed.

slide 42/67

Eliminating Cut: Proof

» Assume a proof with a single mix as the last inference

FAC CTFA
AN

mix

» The induction is on two properties of C:

» Grade: logical complexity of C.
» Rank: Distance from introduction. (Not just axiom rule)

slide 43/67

Eliminating Cut: Proof

» Grade is computed as follows:
» If F is atomic then G(F) =1,
» If F = —A where A is a formula of arbitrary complexity then
G(F)=G(A)+ 1.
» If F = Ax B where A and B are formula of arbitrary complexity
and x € {A,V, = } then G(F) = G(A)+ G(B) +1,
> If F = QxA(x) where A(x) is a formula of arbitrary complexity
and Q € {3,V} then G(F) = G(A) + 1.
» Rank is computed as follows:

rank(P) = m7gx(rank(T, P))
rank,(P) = m7a_\x(rank(7', P))

rank(P) = rank;(P) + rank,(P)
» Here T is a thread.
Connected path from P in the cut to it's introduction.

» Contraction creates multiple instances.
slide 44/67

Eliminating Cut: Rank 2

» Atomic formula introduced right before the mix:

AEA r-A . AEA rEA .
AT FA ™ r-a.a ™
» A proof without mix is possible using contraction and/or
weakening:
r=A r=A
M"AFAA r=AA

» What if A was introduced by weakening?

slide 45/67

Eliminating Cut: Rank 2

» Four cases, only two below:

_reA _r=A
-AA NEA NFA T,AFA
LoraAn Mm% rLneanN Mm%

» A proof without mix is possible using weakening:

r-A r-A

T, AN T,MFAN

» Now we need to consider logic rules (Still rank 2)?

slide 46/67

Eliminating Cut: Rank 2

» We only consider a few principle cases.

» For conjunction we have the following:

-AB THAC BN+ A
[FA,BAC BAC,IFA
L0 F A A mix

» Notice that B occurs both on the left side and right side :

r-AB B,MEFA
M E AL A

mix

» The resulting proof has lower logical complexity and can be
handled by the earlier cases.

slide 47/67

Eliminating Cut: Rank 2

» We only consider a few principle cases.

» For the universal quantifier we have the following:

[AF(a) F(t), M A
I A, VxF(x) VxF(x),M-N
OO F AL A mix

> We can replace the eigenvariable by the term on the right side
(remember regularization)

M4 F(E) F(E),NFA
M- A A

mix

» The resulting proof has lower logical complexity and can be
handled by the earlier cases.

slide 48/67

Eliminating Cut: Rank > 2

» Consider the case of an atomic formula

Fr=AA MAEA
ML= AA
» The rank is the maximum thread length.

mix

» We can reduce it by introducing contractions prior to the mix

r=A MmEA

M- A% A AT A
M E AL A

mix

» The resulting proof has a lower rank with respect to A and
can be handled by the earlier cases.

slide 49/67

Eliminating Cut: Rank > 2

» Consider structural rules (contraction and Weakening):

oW

J
Nr=A MNeEA)
nea,n
» the main fromula of J cannot be the same as the mix (rank 2

case)

A orw
A
L F A% A

mix

» We can move the mix above J and reduce the rank.

» The resulting proof has a lower rank with respect to the main
formula of the mix
slide 50/67

Eliminating Cut: Rank > 2

» Consider binary logic rules:

C,MNy A M= Ay, B
M=A B—>C,H1,ﬂ2|—A1,A2
M0y, N =A% AL A
» The main formula of the mix is contained in both 1y and I,

—:
mix

r-A CMFA r-A TMhkFAyB
C.,T,m A A M O3 F A% Ay, B
B — C,[,0;, M5 F A%, A\,

mix
—:

» This introduces an additional mix, but the rank is reduced.

» The induction hypothesis holds on the two branches.

slide 51/67

Eliminating Cut: Rank > 2

» Consider the existential quantifier:

F(a),NMEA
r=A IxF(x),MEA
I MNxEA*A
P If regularized a fresh eignenvariable is unnecessary.

mix

A F(b),MEA
F(b),T, " F A%, A
FFA 3xF(x),T, 0 F A% A
[s F A% A

mix

» Swapping the quantifier rule and mix reduces rank.

slide 52/67

Eliminating Cut: Algorithm

» The above rules only apply to the upper most mix (cut).

» To eliminate cuts from proofs we first eliminate the upper
most cuts.

» Then we incrementally proceed towards the root.
> What's the complexity of the algorithm??

» Then What is it good for?

slide 53/67

Eliminating Cut: Algorithm

» The above rules only apply to the upper most mix (cut).

» To eliminate cuts from proofs we first eliminate the upper
most cuts.

» Then we incrementally proceed towards the root.
» What's the complexity of the algorithm??
“Don’t Eliminate Cut” by George Boolos

» Eliminating cut can produce a proof with size
non-elementarily larger than the input proof!!

» Remember the refutation from earlier?
» Then What is it good for?

slide 53/67

Cut-freeness and the Herbrand Instances

Theorem (Mid-Sequent Theorem)

Let S be a sequent of prenex formulas then there exists a cut-free
proof m of S s.t. m contains a sequent S’ s.t.

» S’ is quantifier free.
» Every inference above S’ is structural or propositional.

» Every inference below S’ is structural or a quantifier inference.

What if we limit S to a sequent only containing weak
quantification.

We can generalize Skolemization from clause sets to proofs.

slide 54/67

Cut-freeness and the Herbrand Instances

» No strong quantification means no eigenvariables and thus all
terms are existential witnesses.

» Collecting those witnesses gives us Herbrand's Theorem

slide 55/67

Cut-freeness and the Herbrand Instances

» No strong quantification means no eigenvariables and thus all
terms are existential witnesses.

» Collecting those witnesses gives us Herbrand's Theorem
Theorem (Herbrand's Theorem)
Let S be a sequent of the form Vxp(X) - 3xy(%). S is valid if and

only if there exists a sequence of term vectors ti,--- , t, s.t.
k k
N e(@) =\ w()
i=0 i=0
is valid.

slide 55/67

Cut-freeness and the Herbrand Instances

» No strong quantification means no eigenvariables and thus all
terms are existential witnesses.

» Collecting those witnesses gives us Herbrand's Theorem
Theorem (Herbrand's Theorem)
Let S be a sequent of the form Vxp(X) - 3xy(%). S is valid if and

only if there exists a sequence of term vectors ti,--- , t, s.t.
k k
N e(@) =\ w()
i=0 i=0
is valid.

» Cut-free (weakly quantified end sequent) = weak
mid-sequent = Herbrand instances.

slide 55/67

An Herbrand Sequent

» Consider the sequent F - where F contains:

n

\V f(x)=0vf(x)=

i=0
s(x) £y VI(x)#0Vf(y)#0
s(x) £y VI(x)#1VI(y)#1
max(x,y) <z—>x<z
max(x,y)<z—y<z
Vx(x < x)

» Note that F - is provable.
» and we can prove it without cut.

» what does the Herbrand sequent look like?

slide 56/67

An Herbrand Sequent

slide 57/67

£V max(g*(U). (V))

1: VA YBVC (g(U) , g%(U) , max(g(U).g*(U))) (— LEQ(max(Ao, B),C) V LEQ(B.C))
(e(V), V), max(g(V),e(V)))
(1), (V) , max(g"(U).g(V))

2 VAGYBYC (g(U) , g(U) , max(g(U),g2(U))) (= LEQ(max(Aq, B), C) V LEQ(Aq,C))
(e(V), (V) , max(g(V),e(V)))
e(V))

(max(g(U), (V))
3 VA (u) (E(f(A), 5(0)) V E(f(A),0))

(&(u))
(max(g(V),&(V)))
(max(g(U),€*(V)))
(max(g*(V), (V))

4 YA LEQ(A,A)

s: YB1 YA, ((= LEQ(e(B1), A2) v ~ E(f(B1),5(0))) V — E(f(A2),5(0)))

(v,)
(U, max(g(V).g(V)) »
(&), max(g(V), (V))

(U, V)
(U, max(g(V).&(V)) }
(e(U), max(g*(U),&())
(U, max(g(u),&*(V)))

6: ¥Bo VAL) ((~ LEQ(g(Ba), A1) v E(f(B0), 0)) V = E(f(A1),0))

How else to think about cut?

» How different are these two rules?

FaC CUEA THEAC DIEA
LT FA, A cv CoDTFA

—l
> What if we replace cuts by —:l

-AC CIFA
Ir,C—CrA N

cut?

slide 58/67

How else to think about cut?

cut?

NG—G. - .C>CFA

> What if we drop the context [and A?

; S
G =G, .C = G,

» Tautology in the antecedent = Contradiction (Unsatisfiable)

» We have seen this before... Resolution

» Can we exploit this?

slide 59/67

Characteristic Formula Extraction

CL(A-A)={A}
CL(AFA)={-A}
CL(AFA)={-AVA}

L (& p> =c(a+n)
ATV

AN N =
A// [n// e
CL(A - M) A CL(A 1)

LK-Proof with cuts Paths to cut ancestors { CL(A F M) v CLA” = 1)

» The result is a formula which can be transformed into a clause
set.
> Always unsatisfiable.

slide 60/67

Refuting the Characteristic Formula

slide 61/67

i
>
S
—
(@)

L

=

)

-

Refuting the Character

slide 62/67

Refuting the Characteristic Formula

W Res

» Using Herbrand’s Theorem we build the following LK-proof.

CL(Moy,---, CL(Mo, F
» This is still not an LK-proof of the original sequent.

» We need the following proof Projections

A+ CL(N), %

slide 63/67

Refuting the Characteristic Formula

M Projection
AT A M FA-A N
AF A X A A A

AEA P FAV oA X

slide 64/67

Refuting the Characteristic Formula

M Projection

MAFE MBFE NFAT NFBT
MAVBFY Vi MFAVB,Y

MAFL NBrT MAFGE NBFGE
MAVBFY Vi NFEG VG, Y

» Unary rules do not change anything.

» Strong quantifiers on cut ancestors are dropped.

slide 65/67

Propositional Cuts Only

At CL(Moy,~ CL(Moy, -, CL(Mo, - :
A, CL(Moa, -, CL(Mo, % A+ CL(Moa, ¥
A, A, CL(Mos, -, CL(Mo, F X, 5

slide 66/67

Propositional Cuts Only

» Proof might not be cut-free

» Observe: propositional cuts do not obfuscate Herbrand
instances.

» We could avoid this construction by projecting to the clauses
of CL(I).

» Projection computation is more complex.

» Method works for other logics:

» Intuitionistic Logic
» Godel Logic
» Higher-order Logic

slide 67/67

