Computational Proof Theory: Transforming Proofs using Automated Reasoning

David M. Cerna EuroProofNet Summer School on AI for Reasoning and Processing of Mathematics

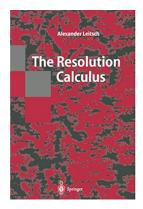
June 25th 2024

-7/65

slide 1/67

- Introduce automated reasoning and the resolution calculus
- Completeness of the resolution calculus
- the Sequent calculus
- Cut-elimination
- Eliminating cuts using resolution

Automated Theorem Proving



 Material based on "The Resolution Calculus" by Alexander Leitsch.

Automated Theorem Proving

- In the most basic sense, automated provers provide a proof that a statement follows from a particular theory T.
- For classical propositional logic, such a prover can decide if the statement follows from T.
- For classical first-order logic (FOL), a prover can only be guaranteed to find a proof if the statement follows from T.
- One can imagine an automated prover which exhaustively applies the rules of a particular complete calculus for T until a proof is constructed.
- For FOL there seem to be too many degrees of freedom, i.e. quantifier instantiations.

The Resolution Calculus

Of the variety of approaches to automated reasoning:

- the tableau calculus,
- the connection method,
- we will focus on the the resolution calculus.
- It is the most commonly used method for theorem proving.
- In its most basic form it consist of a single rule:

$$\frac{\Delta \lor C}{\Delta \sigma} \frac{\Delta' \lor \neg D}{\lor \Delta' \sigma} \operatorname{Res}$$

• where $C\sigma \equiv D\sigma$

- $C\sigma, \neg C\sigma \not\in \Delta\sigma$, and $D\sigma, \neg D\sigma \not\in \Delta'\sigma$
- ▶ This is (almost) enough for a complete proof system for FOL.

Basic principle of Resolution

- $\Delta \lor C$ and $\Delta' \lor \neg D$ are disjunctions of literals.
- we will refer to them as clauses.
- C and D are literals which may be equated by an appropriate substitution of the free variables.
- σ is a unifier of the two literals.

$$f(x,y)\{x\mapsto y\}=f(y,x)\{x\mapsto y\}$$

- Essentially, if a set of clauses is unsatisfiable resolution can be used to provide a proof of unsatisfiability.
- Note: if a formula is valid, then its negation is unsatisfiable.
- Any FOL formula may be translated to a set of clauses.

Clausal Form

- Note: translating a FOL formula to a set of clauses can be done in a satisfiability preserving way.
 - Enough for our goal.
- We assume FOL formulas are constructed using the logic connectives {∃, ∀, ∧, ∨, ¬}.

▶ First step to translation to Negation normal form *nnf*(*F*):

- ► If $F = \neg Qx \ \varphi(x)$ for $Q \in \{\exists, \forall\}$ then $nnf(F) = \overline{Qx} \ nnf(\neg \varphi(x))$
- ► If $F = \neg \varphi \Box \psi$ for $\Box \in \{\land, \lor\}$ then $nnf(F) = nnf(\neg \varphi(x)) \Box nnf(\neg \psi(x))$
- If $F = \neg P$ for an atom P then $nnf(F) = \neg P$.

The goal is to push negation to the literals.

Clausal Form

- After translation to nnf, quantifiers may be prenexified.
 - Move quantifier to the outer most scope (without switching order)
- Next we can skolemize the the \exists quantifiers.
- Confusing? Which quantifier to skolemize depends on the context. (Sometimes called Herbrandization)
- ► Resolution is a refutation calculus, ∃ quantifiers denote arbitrary terms (Strong quantifiers).
- Skolemization?
- Semantically valid syntax extension based on the quantifier structure (not unique!)

 $\forall x \exists y p(x, y) \lor \forall w \exists rq(w, r)$ $\forall x \exists y \forall w \exists r(p(x, y) \lor q(w, r)) \qquad \forall w \exists r \forall x \exists y (p(x, y) \lor q(w, r))$

$$\forall x \forall w (p(x, a) \lor q(w, f(x, w))) \qquad \forall w \forall x (p(x, f(w, x)) \lor q(w, a))$$

slide 8/67

Clausal Form

- Skolemization can be done without prenexing. (More efficient!)
- These transformations result in a formula of the form

$$\forall x_1 \cdots \forall x_n F$$

where F is quantifier-free.

- At this point the quantifiers can be removed as variables in different clauses can be treated independently.
- Now we can cover the whole process to CNF.

Translation to clausal form

$$\forall x \exists y (P(x, y) \land \forall u \forall v (P(u, v) \rightarrow R(u))) \rightarrow \forall z R(z)$$

Remove implications

$$\neg(\forall x \exists y (P(x, y) \land \forall u \forall v (\neg P(u, v) \lor R(u)))) \lor \forall z R(z)$$

Negate the formula

$$\forall x \exists y (P(x,y) \land \forall u \forall v (\neg P(u,v) \lor R(u))) \land \neg \forall z R(z)$$

Convert to nnf

$$\forall x \exists y (P(x, y) \land \forall u \forall v (\neg P(u, v) \lor R(u))) \land \exists z \neg R(z)$$

slide 10/67

Translation to clausal form

Prenex (Not entirely necessary)

$$\exists z \forall x \exists y \forall u \forall v (P(x, y) \land (\neg P(u, v) \lor R(u)) \land \neg R(z))$$

Skolemize

$$\forall x \forall u \forall v (P(x, f(x)) \land (\neg P(u, v) \lor R(u)) \land \neg R(a))$$

As clause set

$$\{P(x,f(x)), \neg P(u,v) \lor R(u), \neg R(a)\}$$

Notice it is unsatisfiable.

Towards Completeness of Resolution

- We have simplified the syntactic structure of FOL formula.
- However, to show that a formula is unsatisfiable, we still need to show that no interpretation satisfies it.
- There are uncountably infinite interpretations.
- We restrict ourselves to a type of interpretation which is representative of the entire set of interpretations.

Herbrand Universe

- Let C be a finite set of clauses.
- CS(C) and FS(C) denote the constant symbols and function symbols occuring in C, respectively.

$$H_0 = \begin{cases} CS(C) & CS(C) \neq \emptyset \\ \{a\} & \text{if } CS(C) = \emptyset \end{cases}$$
$$H_i = H_{i-1} \cup \{f(t_1, \cdots t_n) | f \in FS(C), t_1, \cdots t_n \in H_{i-1}\}$$
$$\blacktriangleright H(C) = \bigcup_{i=0}^{\infty} H_i.$$

• We refer to H(C) as the Herbrand universe of C.

Herbrand Universe

Consider the clause set

 $\{(\neg P(x) \lor P(f(x))), P(h(x,x)), (\neg P(h(u,v)) \lor \neg Q(v))\}$

 $H_0 = \{a\}$ $H_1 = \{a, f(a), h(a, a)\}$

 $H_2 = \{a, f(a), f(f(a)), f(h(a, a)), h(a, a), h(f(a), a), h(a, f(a)) \\ h(f(a), f(a)), h(f(a), h(a, a)), h(h(a, a), f(a)), h(h(a, a), h(a, a))\}$

- Essentially, it is the set of terms constructable from the symbols occurring in the clause set.
- Using the Herbrand universe we can construct a Herbrand interpretation.
- An interpretation with domain H(C) and interpretation function mapping the constructors to themselves.

slide 14/67

H-interpretation correspondence

- ▶ We will denote interpretations by a triple (D, Φ, I) where D is the domain, Φ interpretation function, and $I : V \to H(C)$ the environment.
- We associate with each interpretation (D, Φ, I) a function ω : H(C) → D which is faithful to the construction of the Herbrand universe.
- A corresponding H-interpretation (H(C), Φ_H, J) is an H-interpretation with the following condition on Φ_H:

$$\Phi_H(P)(t_1,\cdots,t_n) = \Phi(P)(\omega(t_1),\cdots,\omega(t_n))$$

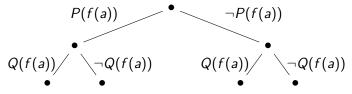
• for all
$$P \in PS(C)$$
 and $t_i \in H(C)$

• PS(C) denotes the predicate symbols of C.

Restriction to H-Models

- A set of clauses *C* is satisfiable iff it has an H-Model.
 - \leftarrow If C has an H-Model then it is trivially satisfiable.
 - $\rightarrow\,$ we can instead consider:
 - If C does not have an H-model then it is unsatisfiable.
- ► This implies that all H-interpretations falsify C.
- For any interpretation we can construct a corresponding H-interpretation.
- We need to show that reversing this construction preserves falsifiability.
- ► There is a d ∈ C which is falsified by the H-Model. In can be shown by induction over term depth that a ground substitution of the terms within the clause exists which coincides with the H-models semantic interpretation.
- The rest follows from the construction of a corresponding H-interpretation.

- The restriction to H-Models depends on grounding the terms occurring in C.
- For a given clause set C and Herbrand universe H(C) we can construct a so called Semantic tree containing partial truth assignments of the predicates occurring in C.

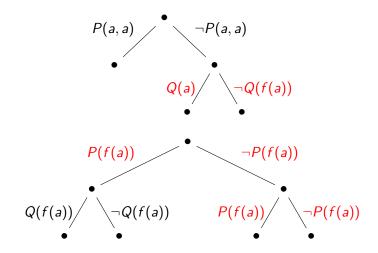


• Every node can be expanded by a positive and negative edge.

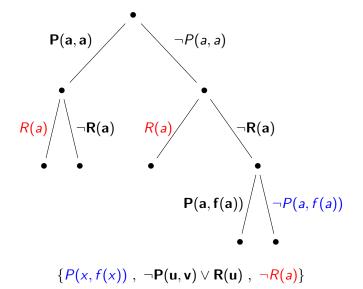
- The same symbols and tuple of terms is used on each branch at each expansion step.
- Same expansion step cannot be repeated.

slide 17/67

These are not a semantic trees:



- A complete semantic tree can be built iteratively.
- Order the predicate symbols of C and terms of H(C).
- then continuously expand with respect to the order.
- After a number of expansion steps a branch may contain a ground instance which falsifies a clause.
- such nodes of the tree are referred to as failure nodes.
- failure nodes are not expanded.
- ▶ If every branch ends in a failure node, then the tree is closed.



slide 20/67

Semantic trees and unsatisfiably

- ► A set of clauses *C* is unsatisfiable iff its semantic tree *T* is closed.
 - \leftarrow T tells us how to build a falsifying H-models.
 - \rightarrow Each branch represents an H-model. We know no H-model satisfies C thus T must eventually close.
- A closed semantic tree T for a set of clauses C is finite.
 - For *T* to be infinite, being that it is finitely branching, there would have to be an infinite path. But that contradicts the definition of failure node.
- This gives us a crude automated theorem prover, but it is complete.

Semantic Trees and Ground Instances

- Notice that a closed semantic tree T of a set of clauses C proves unsatisfiably by collecting a set of ground instances of the clauses of C.
- This set of ground instances is enough to prove unsatisfiably of C.
- This observation provides a variant of Herbrand's theorem (Soon!)

A set of clauses C is unsatisfiable iff there exists a finite unsatisfiable set of clauses C' such that C' consists of ground instances of clauses in C.

- The method of Davis and Putnam is based on saturation of sets of ground instances of clauses.
- Resolution improves on this and earlier methods by avoiding the search for ground instances.

Propositional (Ground) Resolution

Let us consider resolution without substitution first:

$$rac{\Delta ee C}{\Delta \ ee \Delta' ee \neg C}$$
 Res

Soundness of the rule is easy to observe:

 $\text{if } (\Delta \lor C) \land (\Delta' \lor \neg C) \text{ is true then } \Delta ~\lor~ \Delta' \text{ is true.}$

However, an additional step is needed in some cases:

$$\frac{C \lor C}{C} \frac{\neg C \lor \neg C}{\neg C} \operatorname{Res}$$

• $(C \lor C) \land (\neg C \lor \neg C)$ is pretty unsatisfiable.

- To avoid this issue we need to add a contraction rule (can be built into the resolution rule).
- Often referred to as factoring.

Completeness of Propositional Resolution

 \star If C is an unsatisfiable set of propositional clauses then there exists a refutation of C.

We can prove this statement by induction on the height of the semantic tree T of CNote that H(C) is trivial for a propositional clause set.

- BC If the T has height 1 then C contains \perp .
- SC Assume \star holds for all clause sets C' whose tree T' is of height n, we show that the statement holds for C whose tree T is of height n + 1.
 - Notice that nodes at level n connect to failure nodes at level n+1 through edges labeled by complementary literals.
 - Let C₁ ∨ P and C₂ ∨ ¬P be the clauses corresponding to the failure nodes.

Completeness of Propositional Resolution

- ► Using resolution and contraction we can build the clause set C ∪ {C'₁ ∨ C'₂} where
 - $C'_1 \vee C'_2$ is equivalent $C_1 \vee C_2$ after contraction.
 - T' is equivalent to T with the failure nodes corresponding to $C_1 \lor P$ and $C_2 \lor \neg P$ removed.
 - The node at level *n* is now a failure node for $C'_1 \vee C'_2$.
- Repeating this process for all nodes at level n we get a semantic tree of height n.
- ► Hint: Useless edges may have to be removed.
- This can be easily generalized from propositional (ground) clause sets to first-order.
- ▶ The branches need only contain instances of the clauses in *C*.
- A closed tree can always be grounded.

More General Resolution

Consider the clause set:

$$P(x, f(y)) \lor P(x, f(x)) , \neg P(x, y) \lor P(y, x) ,$$
$$\neg P(x, y) \lor P(f(x), y) , \neg P(f(f(x)), x)$$

It can be refuted as follows:

$$\frac{P(x, f(y)) \lor P(x, f(x)) \qquad \neg P(x, y) \lor P(y, x)}{P(f(x), x)} \operatorname{Res} \qquad \neg P(x, y) \lor P(f(x), y) \\ \frac{P(f(x), x) \qquad \neg P(f(f(x)), x)}{P(f(x), y)} \operatorname{Res} \qquad \neg P(f(f(x)), x) \\ + P(f(x), y) \land P(x, y) \lor P(x$$

- Finding the substitution is similar to the search for ground instantiations.
- However, there is a special type of unifier which allows resolution to be more efficient than ground instantiation methods.

Generality Order

- There are may be infinitely many unifiers of two terms.
- We may order the unifiers by generality in the following sense.
- We say σ_1 is more general than σ_2 , $\sigma_1 \leq \sigma_2$, if $\sigma_1 \tau = \sigma_2$.
- ► For example,

$$f(x)\{x \leftarrow g(a,a), y \leftarrow a\} = f(g(y,a))\{x \leftarrow g(a,a), y \leftarrow a\}$$

 $f(x)\{x \leftarrow g(y,a)\} = f(g(y,a))\{x \leftarrow g(a,a)\}$

Notice that

$$\{x \leftarrow g(y, a) , y \leftarrow y\}\{y \leftarrow a\} = \{x \leftarrow g(a, a) , y \leftarrow a\}$$

► Thus, $\{x \leftarrow g(y, a)\} \le \{x \leftarrow g(a, a), y \leftarrow a\}$

Most General Unifier

- A unifier σ is an mgu if for all unifiers τ , $\sigma \leq \tau$
- For first-order term expressions if two terms are unifiable then there is a unique mgu, up to variable renaming, unifying them.
- $\{x \leftarrow g(y, a)\}$ is the mgu for the previous example.
- ▶ It is decidable if two first-order term expressions have an mgu.
- Computing the mgu naively requires exponential time, but it is computable in nearly linear.
- See the Martelli-Montanari Algorithm for unification.

Constructing MGUs

- By diff(t₁, t₂) we denote the pairs of subterms (with matching positions) which do not match when decomposing t₁ and t₂ top-down.
- For example

 $diff(g(\mathbf{x}, f(\mathbf{a}, b), h(\mathbf{b})), g(\mathbf{f}(\mathbf{a}, \mathbf{b}), f(\mathbf{y}, b), f(\mathbf{b}, \mathbf{b})))$ contains

(x, f(a, b)), (a, y), (h(b), f(b, b))

- Notice that (h(b), f(b, b)) cannot be unified and thus, these two term are not unifiable.
- Consider $diff(x, f(a, x)) = \{(x, f(a, x))\}$
- This seems unifiable, but (x, f(a, x)) implies our mgu ought to contain the substitution {x ← f(a, x)}.

$$x\{x \leftarrow f(a,x)\} = f(a,x) \neq f(a,f(a,x)) = f(a,x)\{x \leftarrow f(a,x)\}$$

Results in an infinite loop.

Constructing MGUs

- Thus, unification fails if $diff(t_1, t_2)$ contains
 - terms with different head symbols.
 - a pair of the form (x, t[x]).

```
Require: \sigma = Id

while diff(t_1\sigma, t_2\sigma) \neq \emptyset do

if (x, t[x]), (f(\bar{t}), g(\bar{s})) \in diff(t_1\sigma, t_2\sigma) then

return Fail

else

Select (s, t) \in diff(t_1\sigma, t_2\sigma)

if s is a variable then

\sigma = \sigma\{s \leftarrow t\}

else

\sigma = \sigma\{t \leftarrow s\}

end if

end while

return \sigma
```

Exponential behavior occurs because the substitution may apply to itself, i.e. can build full binary trees.

slide 30/67

MGUs and Resolution

- We can lift MGU to the clausal level by lifting the generality order to clauses:
 - Let C, D be clauses and C', D' clauses resulting from C, D by contraction. Then $C \leq D$ implies $C' \leq D'$.
 - Let C, D, C', D' be clauses such that $C \leq C'$ and $D \leq D'$. If E' is the result of resolving C' and D' then there exists a resolvent E of C and D with $E \leq E'$.
- This statement is usually referred to as the lifting lemma.
- We can further generalize the lemma to full resolution derivations implying that we only need to consider MGUs when applying resolution.

Lifting Theorem

Theorem

Let C be a set of clauses and C' be a set of instances of clauses in C. Let Δ be a resolution deduction from C'. Then there exists a resolution deduction Γ from C such that $\Gamma \leq \Delta$.

Theorem (completeness)

If C is an unsatisfiable set of clauses then there exists an resolution refutation of C.

Proof.

We can lift ground resolution refutations to non-ground resolution refutation by the lifting theorem. $\hfill \Box$

How big can refutations get?

- Refutations can be non-elementary in the size of the formula.
 - That is faster growing than f(0) = 1 , $f(n+1) = 2^{f(n)}$
- Statman constructed a sequence of clause sets, using Combinatory logic, whose refutations grow faster than f(n).
 In "Lower bounds on Herbrand's theorem".
- ▶ Here is an example of a simple but hard to refute clause set:

$$E(x, a) \lor E(x, b) \lor E(x, c)$$
, $\neg E(x, a) \lor \neg E(y, a) \lor L(s(y), x)$

 $\neg E(x,b) \lor \neg E(y,b) \lor L(s(y),x) , \ \neg E(x,c) \lor \neg E(y,c) \lor L(s(y),x)$

- $\neg L(m(x,y),z) \lor L(x,z) , \ \neg L(m(x,y),z) \lor L(y,z) , \ L(x,x)$
- Requires the derivation of 100s of clauses to refute.
- Many interesting problems can be found at

http://www.tptp.org/

- Introduce automated reasoning and the resolution calculus
- Completeness of the resolution calculus
- the Sequent calculus
- Cut-elimination
- Eliminating cuts using resolution

Background: Gentzen's Sequent Calculus

- The sequent calculus applies inferences to objects referred to as sequents Δ ⊢ Π, where Δ and Π are multisets of well-formed formula. Chaining inferences forms proof trees.
- Semantically, a sequent means given Δ we may derive Π .
- Note that, this interpretation implies that Δ is essentially a conjunction of formula and Π is a disjunction.
- The sequent calculus inferences are as follows: <u>Axiom Inferences</u>

$$A \vdash A$$
 Ax

Gentzen's Sequent Calculus

Structural Inferences

$D, D, \Gamma \vdash \Delta$	$\Gamma \vdash \Delta, D, D$
$\overline{D,\Gamma\vdash\Delta}$ C:I	$\Gamma \vdash \Delta, D$

$$\frac{\Gamma\vdash\Delta,C\quad C,\Gamma'\vdash\Delta'}{\Gamma,\Gamma'\vdash\Delta,\Delta'}\operatorname{cut}$$

Gentzen's Sequent Calculus

Logical Inferences

$$\frac{\Gamma \vdash \Delta, D}{\neg D, \Gamma \vdash \Delta} \neg : \mathsf{I} \qquad \frac{D, \Gamma \vdash \Delta}{\Gamma \vdash \Delta, \neg D} \neg : \mathsf{r} \quad \frac{C, \Gamma \vdash \Delta}{C \land D, \Gamma \vdash \Delta} \land : \mathsf{I}$$

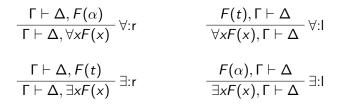
$$\frac{D, \Gamma \vdash \Delta}{C \land D, \Gamma \vdash \Delta} \land : \mathsf{I} \quad \frac{\Gamma \vdash \Delta, C}{\Gamma \vdash \Delta, C \lor D} \lor : \mathsf{r} \quad \frac{\Gamma \vdash \Delta, D}{\Gamma \vdash \Delta, C \lor D} \lor : \mathsf{r}$$

$$\frac{\Gamma \vdash \Delta, C \quad \Gamma \vdash \Delta, D}{\Gamma \vdash \Delta, C \land D} \land : \mathsf{r} \quad \frac{C, \Gamma \vdash \Delta}{C \lor D, \Gamma \vdash \Delta} \lor : \mathsf{l}$$

$$\frac{C, \Gamma \vdash \Delta, D}{\Gamma \vdash \Delta, C \to D} \to : \mathsf{r} \qquad \frac{\Gamma \vdash \Delta, C \quad D, \Gamma \vdash \Delta}{C \to D, \Gamma \vdash \Delta} \to : \mathsf{I}$$

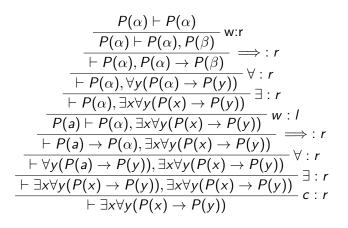
Gentzen's Sequent Calculus

Quantifier Inferences



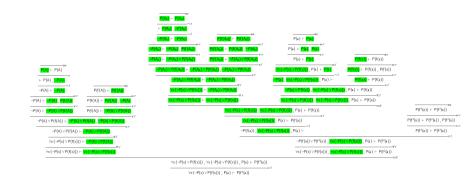
Note that for ∃ : *I* and ∀ : *r* α may not occur in Γ or Δ. These rules are referred to as strong quantification, i.e. require an eigenvariable, the other rules are referred to as weak.

Simple Sequent Calculus Proof



D.M. Cerna

Sequent Calculus Proof With Cut



- Green formulas denote **cuts** and their ancestors.
- The cut rule is used in introduce *auxiliary arguments* (Lemmas) into a proof.
 - That is concepts external to the statement being proven.

Proof without Cut

ax = P(a)		
¬P(a) , P(a) ⊢	$P(f(a)) \vdash P(f(a))$	
$ eg P(a) \lor P(f(a))$		
$\forall x (\neg P(x) \lor P(f(x))$), P(a) ⊢ P(f(a))	24
$\neg P(f(a)), \forall x (\neg P(x))$	∨ P(f(x))) , P(a) ⊢	$\frac{ax}{P(f^2(a)) \vdash P(f^2(a))}$
$\neg P(f(a)) \lor P(f^2$	(a)), $\forall x (\neg P(x) \lor P(f(x))$	
$\forall x (\neg P(x) \lor P(f))$	(x))) , $\forall x (\neg P(x) \lor P(f(x))$	
∀x (-	$P(x) \lor P(f(x)))$, $P(a) \vdash$	c:/ P(f ² (a))

Proofs without cuts are referred to as analytic proofs.

Every formula is a subformula of the end sequent.

- Observe that cut is the only rule that removes formula from the sequent.
- If one could derive ⊥ using the sequent calculus, then it would involve cut.

slide 41/67

Eliminating Cut:Proof

Gentzen's *Hauptsatz*: cuts can be eliminated.

- We assume proofs have been **Regularized**.
 - Unique eigenvariable for each Strong quantifier.
- Additionally, a generalization of the **cut rule** is used.

$$\frac{\Gamma\vdash\Delta,C\quad C,\Gamma\vdash\Delta}{\Gamma'\vdash\Delta'} \mathsf{mix}$$

where Γ' and Δ' are equivalent to Γ and Δ but with every instance of *C* removed.

Eliminating Cut: Proof

Assume a proof with a single mix as the last inference

$$\frac{\frac{\vdots}{\Gamma\vdash\Delta,C}}{\frac{\Gamma\vdash\Delta'}{\Gamma'\vdash\Delta'}} \underset{\mathsf{mix}}{\overset{\vdots}{}}$$

- The induction is on two properties of C:
 - **Grade**: logical complexity of *C*.
 - **Rank**: Distance from introduction. (Not just axiom rule)

Eliminating Cut: Proof

- Grade is computed as follows:
 - If F is atomic then G(F) = 1,
 - ▶ If $F = \neg A$ where A is a formula of arbitrary complexity then G(F) = G(A) + 1.
 - ▶ If $F = A \star B$ where A and B are formula of arbitrary complexity and $\star \in \{\land, \lor, \Longrightarrow\}$ then G(F) = G(A) + G(B) + 1,
 - ▶ If $F = Q \times A(x)$ where A(x) is a formula of arbitrary complexity and $Q \in \{\exists, \forall\}$ then G(F) = G(A) + 1.

Rank is computed as follows:

$$\mathit{rank}_l(P) = \max_{\mathcal{T}}(\mathit{rank}(\mathcal{T}, P))$$

 $\mathit{rank}_r(P) = \max_{\mathcal{T}}(\mathit{rank}(\mathcal{T}, P))$
 $\mathit{rank}(P) = \mathit{rank}_l(P) + \mathit{rank}_r(P)$

• Here \mathcal{T} is a **thread**.

Connected path from P in the cut to it's introduction.

Contraction creates multiple instances.

slide 44/67

Atomic formula introduced right before the mix:

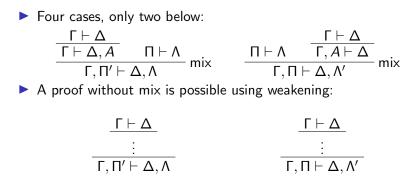
 <u>A ⊢ A Γ ⊢ Δ</u> mix
 <u>A ⊢ A Γ ⊢ Δ</u> mix
 <u>A ⊢ A Γ ⊢ Δ</u> mix

 A proof without mix is possible using contraction and/or weakening:

 <u>Γ ⊢ Δ</u>
 <u>Γ ⊢ Δ</u>

$$\frac{\vdots}{\Gamma', A \vdash \Delta, A} \qquad \qquad \frac{\vdots}{\Gamma \vdash \Delta', A}$$

What if A was introduced by weakening?



Now we need to consider logic rules (Still rank 2)?

- We only consider a few principle cases.
- ► For conjunction we have the following:

$$\frac{\Gamma \vdash \Delta, B \quad \Gamma \vdash \Delta, C}{\Gamma \vdash \Delta, B \land C} \quad \frac{B, \Pi \vdash \Lambda}{B \land C, \Pi \vdash \Lambda}$$
mix

Notice that B occurs both on the left side and right side :

$$\frac{\Gamma\vdash\Delta,B\quad B,\Pi\vdash\Lambda}{\Gamma,\Pi'\vdash\Delta',\Lambda}$$
 mix

The resulting proof has lower logical complexity and can be handled by the earlier cases.

- We only consider a few principle cases.
- ► For the universal quantifier we have the following:

$$\frac{\frac{\Gamma \vdash \Delta F(a)}{\Gamma \vdash \Delta, \forall x F(x)} - \frac{F(t), \Pi \vdash \Lambda}{\forall x F(x), \Pi \vdash \Lambda}}{\Gamma, \Pi' \vdash \Delta', \Lambda}$$
mix

 We can replace the eigenvariable by the term on the right side (remember regularization)

$$\frac{\Gamma \vdash \Delta, F(t) \qquad F(t), \Pi \vdash \Lambda}{\Gamma, \Pi' \vdash \Delta', \Lambda}$$
mix

The resulting proof has lower logical complexity and can be handled by the earlier cases.

Consider the case of an atomic formula

$$\frac{\Gamma\vdash\Delta,A}{\Gamma,\Pi'\vdash\Delta',\Lambda} \operatorname{mix}$$

- The rank is the maximum thread length.
- We can reduce it by introducing contractions prior to the mix

The resulting proof has a lower rank with respect to A and can be handled by the earlier cases.

Consider structural rules (contraction and Weakening):

$$\frac{ \begin{array}{c} \Phi \vdash \Psi \\ \hline \Pi \vdash \Lambda \end{array}}{ \Gamma, \Pi' \vdash \Delta', \Lambda} \operatorname{mix}$$

the main fromula of J cannot be the same as the mix (rank 2 case)

$$\frac{\Gamma \vdash \Delta \quad \Phi \vdash \Psi}{\frac{\Gamma, \Phi^* \vdash \Delta^*, \Psi}{\Gamma, \Pi^* \vdash \Delta^*, \Lambda} \mathsf{J}} \mathsf{mix}$$

- We can move the mix above J and reduce the rank.
- The resulting proof has a lower rank with respect to the main formula of the mix

slide 50/67

Consider binary logic rules:

$$\frac{\Gamma \vdash \Delta}{\Gamma, \Pi_1^*, \Pi_2^* \vdash \Delta^*, \Lambda_1, \Lambda_2} \xrightarrow{\begin{array}{c} C, \Pi_1 \vdash \Lambda_1 & \Pi_2 \vdash \Lambda_2, B \\ B \to C, \Pi_1, \Pi_2 \vdash \Lambda_1, \Lambda_2 \\ \hline \Gamma, \Pi_1^*, \Pi_2^* \vdash \Delta^*, \Lambda_1, \Lambda_2 \end{array}}$$
mix

The main formula of the mix is contained in both Π₁ and Π₂

$$\frac{\Gamma \vdash \Delta \quad C, \Pi_1 \vdash \Lambda_1}{C, \Gamma, \Pi_1^* \vdash \Delta^*, \Lambda_1} \operatorname{mix} \quad \frac{\Gamma \vdash \Delta \quad \Pi_2 \vdash \Lambda_2, B}{\Gamma, \Pi_2^* \vdash \Delta^*, \Lambda_2, B} \operatorname{mix}_{B \to C, \Gamma, \Pi_1^*, \Pi_2^* \vdash \Delta^*, \Lambda_1 \Lambda_2} \to: I$$

- This introduces an additional mix, but the rank is reduced.
- The induction hypothesis holds on the two branches.

Consider the existential quantifier:

$$\frac{F(a),\Pi\vdash\Lambda}{\exists xF(x),\Pi\vdash\Lambda}$$

$$\frac{\Gamma\vdash\Delta}{\Gamma,\Pi*\vdash\Delta^*,\Lambda}$$
mix

If regularized a fresh eignenvariable is unnecessary.

$$\frac{\Gamma \vdash \Delta \qquad F(b), \Pi \vdash \Lambda}{\frac{F(b), \Gamma, \Pi^* \vdash \Delta^*, \Lambda}{\exists x F(x), \Gamma, \Pi^* \vdash \Delta^*, \Lambda}} \operatorname{mix}_{\Gamma, \Pi^* \vdash \Delta^*, \Lambda}$$

Swapping the quantifier rule and mix reduces rank.

slide 52/67

Eliminating Cut: Algorithm

- The above rules only apply to the upper most mix (cut).
- To eliminate cuts from proofs we first eliminate the upper most cuts.
- Then we incrementally proceed towards the root.
- What's the complexity of the algorithm??

Eliminating Cut: Algorithm

- The above rules only apply to the upper most mix (cut).
- To eliminate cuts from proofs we first eliminate the upper most cuts.
- Then we incrementally proceed towards the root.
- What's the complexity of the algorithm?? "Don't Eliminate Cut" by George Boolos
- Eliminating cut can produce a proof with size non-elementarily larger than the input proof!!
- Remember the refutation from earlier?
- Then What is it good for?

Theorem (Mid-Sequent Theorem)

Let S be a sequent of prenex formulas then there exists a cut-free proof π of S s.t. π contains a sequent S' s.t.

- S' is quantifier free.
- Every inference above S' is structural or propositional.
- Every inference below S' is structural or a quantifier inference.

What if we limit S to a sequent only containing <u>weak</u> quantification.

We can generalize **Skolemization** from clause sets to proofs.

- No strong quantification means no <u>eigenvariables</u> and thus all terms are existential witnesses.
- Collecting those witnesses gives us Herbrand's Theorem

- No strong quantification means no <u>eigenvariables</u> and thus all terms are existential witnesses.
- Collecting those witnesses gives us Herbrand's Theorem

Theorem (Herbrand's Theorem)

Let S be a sequent of the form $\forall \bar{x} \varphi(\bar{x}) \vdash \exists \bar{x} \psi(\bar{x})$. S is valid if and only if there exists a sequence of term vectors $\bar{t}_1, \dots, \bar{t}_n$ s.t.

$$\bigwedge_{i=0}^k \varphi(ar{t}_i) dash \bigvee_{i=0}^k \psi(ar{t}_i)$$

is valid.

- No strong quantification means no <u>eigenvariables</u> and thus all terms are existential witnesses.
- Collecting those witnesses gives us Herbrand's Theorem

Theorem (Herbrand's Theorem)

Let S be a sequent of the form $\forall \bar{x} \varphi(\bar{x}) \vdash \exists \bar{x} \psi(\bar{x})$. S is valid if and only if there exists a sequence of term vectors $\bar{t}_1, \dots, \bar{t}_n$ s.t.

$$\bigwedge_{i=0}^k \varphi(\bar{t}_i) \vdash \bigvee_{i=0}^k \psi(\bar{t}_i)$$

is valid.

 Cut-free (weakly quantified end sequent) => weak mid-sequent => Herbrand instances.

An Herbrand Sequent

• Consider the sequent $F \vdash$ where F contains:

$$\bigvee_{i=0}^{n} f(x) = 0 \lor f(x) = 1,$$
$$s(x) \leq y \lor f(x) \neq 0 \lor f(y) \neq 0$$
$$s(x) \leq y \lor f(x) \neq 1 \lor f(y) \neq 1$$
$$max(x, y) \leq z \to x \leq z$$
$$max(x, y) \leq z \to y \leq z$$
$$\forall x(x \leq x)$$

- Note that $F \vdash$ is provable.
- and we can prove it without cut.
- what does the Herbrand sequent look like?

slide 56/67

An Herbrand Sequent

```
\langle g^2(U), g(U), max(g^2(U), g(U)) \rangle
1: \forall A_0 \forall B \forall C \langle g(U), g^2(U), max(g(U), g^2(U)) \rangle ( \neg LEQ(max(A_0, B), C) \lor LEQ(B, C) )
                      \langle g(U), g(U), max(g(U), g(U)) \rangle
                     \langle g^2(U), g(U), max(g^2(U), g(U)) \rangle
2: \forall A_0 \forall B \forall C \langle g(U), g^2(U), max(g(U), g^2(U)) \rangle (\neg LEQ(max(A_0, B), C) \lor LEQ(A_0, C))
                      \langle g(U), g(U), max(g(U), g(U)) \rangle
                  (g(U))
           \langle \max(g(U), g(U)) \rangle
                                        ( E(f(A), s(0)) ∨ E(f(A), 0) )
3:∀A (U)
          (\max(g^2(U), g(U)))
          ( \max(g(U), g^2(U)) )
                   (g(U))
4: \forall A  \langle \max(g(U), g(U)) \rangle (\max(g(U), g^2(U)) \rangle (EQ(A, A))
         ( \max(g^2(U), g(U)) )
                   \langle U, \max(g^2(U), g(U)) \rangle
                            (U,g(U))
5: ∀B1 ∀A2
                                                          ( ( \neg LEQ(g(B_1), A_2) \lor \neg E(f(B_1), s(0)) ) \lor \neg E(f(A_2), s(0)) )
                   \langle U, max(g(U), g(U)) \rangle
                 \langle g(U), max(g(U), g^2(U)) \rangle
                            (U,g(U))
                   (U, max(g(U), g(U)))
 \textbf{ 6: } \forall B_0 \forall A_1 \quad ( \textbf{ 0, max}(\textbf{g}(U), \textbf{g}(U)) ) \\ ( \textbf{g}(U), \text{ max}(\textbf{g}^2(U), \textbf{g}(U)) ) \\ ( ( \neg \text{ LEQ}(\textbf{g}(B_0), A_1) \lor \neg \text{ E}(f(B_0), 0) ) \lor \neg \text{ E}(f(A_1), 0) ) 
                   \langle U | max(g(U), g^2(U)) \rangle
```

How else to think about cut?

How different are these two rules?

$$\frac{-\Gamma\vdash\Delta,C-C,\Gamma'\vdash\Delta'}{\Gamma,\Gamma'\vdash\Delta,\Delta'} \operatorname{cut} \quad \frac{-\Gamma\vdash\Delta,C-D,\Gamma\vdash\Delta}{C\to D,\Gamma\vdash\Delta} \to :I$$

► What if we replace cuts by →:I

$$\frac{\Gamma \vdash \Delta, C \quad C, \Gamma' \vdash \Delta'}{\Gamma, \Gamma', C \rightarrow C \vdash \Delta, \Delta'} \operatorname{cut}?$$

How else to think about cut?

$$\frac{\vdots}{\Gamma, C_1 \to C_1, \cdots, C_n \to C_n \vdash \Delta} \operatorname{cut}?$$

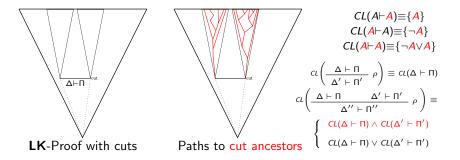
What if we drop the context Γ and Δ?

$$\frac{\vdots}{C_1 \to C_1, \cdots, C_n \to C_n \vdash} \operatorname{cut}?$$

► Tautology in the antecedent ⇒ Contradiction (**Unsatisfiable**)

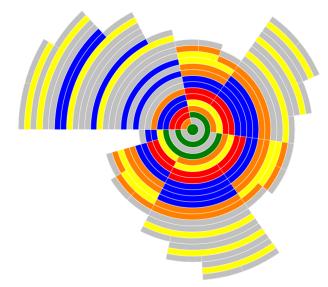
- ► We have seen this before... Resolution
- Can we exploit this?

Characteristic Formula Extraction



- The result is a formula which can be transformed into a clause set.
- Always unsatisfiable.

slide 60/67

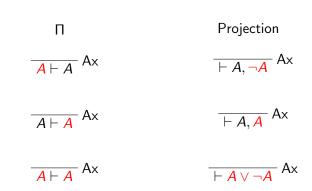


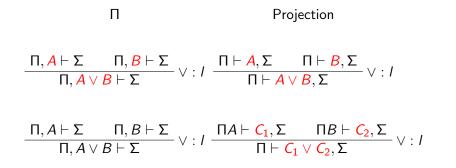
► Using Herbrand's Theorem we build the following LK-proof.

$$\overline{CL(\Pi)\sigma_1,\cdots,CL(\Pi)\sigma_n} \vdash$$

- This is still not an LK-proof of the original sequent.
- We need the following proof Projections

$$\frac{\vdots}{\Delta \vdash CL(\Pi), \Sigma}$$



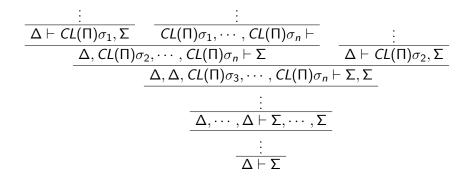


Unary rules do not change anything.

Strong quantifiers on cut ancestors are dropped.

slide 65/67

Propositional Cuts Only



Propositional Cuts Only

- Proof might not be cut-free
- Observe: propositional cuts do not obfuscate Herbrand instances.
- We could avoid this construction by projecting to the clauses of CL(Π).
- Projection computation is more complex.
- Method works for other logics:
 - Intuitionistic Logic
 - Gödel Logic
 - Higher-order Logic