
D.M. Cerna Computational Proof Theory June 25th 2024

Computational Proof Theory: Transforming
Proofs using Automated Reasoning

David M. Cerna
EuroProofNet Summer School on AI for Reasoning and

Processing of Mathematics

June 25th 2024

slide 1/67



D.M. Cerna Computational Proof Theory June 25th 2024

Goals

▶ Introduce automated reasoning and the resolution calculus

▶ Completeness of the resolution calculus

▶ the Sequent calculus

▶ Cut-elimination

▶ Eliminating cuts using resolution

slide 2/67



D.M. Cerna Computational Proof Theory June 25th 2024

Automated Theorem Proving

▶ Material based on “The Resolution Calculus”
by Alexander Leitsch.

slide 3/67



D.M. Cerna Computational Proof Theory June 25th 2024

Automated Theorem Proving

▶ In the most basic sense, automated provers provide a proof
that a statement follows from a particular theory T .

▶ For classical propositional logic, such a prover can decide if
the statement follows from T .

▶ For classical first-order logic (FOL), a prover can only be
guaranteed to find a proof if the statement follows from T .

▶ One can imagine an automated prover which exhaustively
applies the rules of a particular complete calculus for T until a
proof is constructed.

▶ For FOL there seem to be too many degrees of freedom, i.e.
quantifier instantiations .

slide 4/67



D.M. Cerna Computational Proof Theory June 25th 2024

The Resolution Calculus

▶ Of the variety of approaches to automated reasoning:
▶ the tableau calculus,
▶ the connection method,

▶ we will focus on the the resolution calculus.

▶ It is the most commonly used method for theorem proving.

▶ In its most basic form it consist of a single rule:

∆ ∨ C ∆′ ∨ ¬D
Res

∆σ ∨ ∆′σ
▶ where Cσ ≡ Dσ

▶ Cσ,¬Cσ ̸∈ ∆σ, and Dσ,¬Dσ ̸∈ ∆′σ

▶ This is (almost) enough for a complete proof system for FOL.

slide 5/67



D.M. Cerna Computational Proof Theory June 25th 2024

Basic principle of Resolution

▶ ∆ ∨ C and ∆′ ∨ ¬D are disjunctions of literals.

▶ we will refer to them as clauses.

▶ C and D are literals which may be equated by an appropriate
substitution of the free variables.

▶ σ is a unifier of the two literals.

f (x , y){x 7→ y} = f (y , x){x 7→ y}

▶ Essentially, if a set of clauses is unsatisfiable resolution can be
used to provide a proof of unsatisfiability.

▶ Note: if a formula is valid, then its negation is unsatisfiable.

▶ Any FOL formula may be translated to a set of clauses.

slide 6/67



D.M. Cerna Computational Proof Theory June 25th 2024

Clausal Form

▶ Note: translating a FOL formula to a set of clauses can be
done in a satisfiability preserving way.
▶ Enough for our goal.

▶ We assume FOL formulas are constructed using the logic
connectives {∃, ∀,∧,∨,¬}.

▶ First step to translation to Negation normal form nnf (F ):
▶ If F = ¬Qx φ(x) for Q ∈ {∃,∀} then

nnf (F ) = Q̄x nnf (¬φ(x))
▶ If F = ¬φ □ ψ for □ ∈ {∧,∨} then

nnf (F ) = nnf (¬φ(x)) □̄ nnf (¬ψ(x))
▶ If F = ¬P for an atom P then nnf (F ) = ¬P.

▶ The goal is to push negation to the literals.

slide 7/67



D.M. Cerna Computational Proof Theory June 25th 2024

Clausal Form

▶ After translation to nnf, quantifiers may be prenexified.
▶ Move quantifier to the outer most scope (without switching

order)
▶ Next we can skolemize the the ∃ quantifiers.
▶ Confusing? Which quantifier to skolemize depends on the

context. (Sometimes called Herbrandization)
▶ Resolution is a refutation calculus, ∃ quantifiers denote

arbitrary terms (Strong quantifiers).
▶ Skolemization?
▶ Semantically valid syntax extension based on the quantifier

structure (not unique!)

∀x∃yp(x , y) ∨ ∀w∃rq(w , r)
∀x∃y∀w∃r(p(x , y)∨q(w , r)) ∀w∃r∀x∃y(p(x , y)∨q(w , r))

∀x∀w(p(x , a)∨q(w , f (x ,w))) ∀w∀x(p(x , f (w , x))∨q(w , a))
slide 8/67



D.M. Cerna Computational Proof Theory June 25th 2024

Clausal Form

▶ Skolemization can be done without prenexing.
(More efficient!)

▶ These transformations result in a formula of the form

∀x1 · · · ∀xnF

where F is quantifier-free.

▶ At this point the quantifiers can be removed as variables in
different clauses can be treated independently.

▶ Now we can cover the whole process to CNF.

slide 9/67



D.M. Cerna Computational Proof Theory June 25th 2024

Translation to clausal form

▶ Consider F =

∀x∃y(P(x , y) ∧ ∀u∀v(P(u, v)→R(u)))→∀zR(z)

▶ Remove implications

¬(∀x∃y(P(x , y) ∧ ∀u∀v(¬P(u, v)∨R(u))))∨∀zR(z)

▶ Negate the formula

∀x∃y(P(x , y) ∧ ∀u∀v(¬P(u, v) ∨ R(u)))∧¬∀zR(z)

▶ Convert to nnf

∀x∃y(P(x , y) ∧ ∀u∀v(¬P(u, v) ∨ R(u))) ∧ ∃z¬R(z)

slide 10/67



D.M. Cerna Computational Proof Theory June 25th 2024

Translation to clausal form

▶ Prenex (Not entirely necessary)

∃z∀x∃y∀u∀v(P(x , y) ∧ (¬P(u, v) ∨ R(u)) ∧ ¬R(z))

▶ Skolemize

∀x∀u∀v(P(x , f (x)) ∧ (¬P(u, v) ∨ R(u)) ∧ ¬R(a))

▶ As clause set

{P(x , f (x)) , ¬P(u, v) ∨ R(u) , ¬R(a)}

▶ Notice it is unsatisfiable.

slide 11/67



D.M. Cerna Computational Proof Theory June 25th 2024

Towards Completeness of Resolution

▶ We have simplified the syntactic structure of FOL formula.

▶ However, to show that a formula is unsatisfiable, we still need
to show that no interpretation satisfies it.

▶ There are uncountably infinite interpretations.

▶ We restrict ourselves to a type of interpretation which is
representative of the entire set of interpretations.

slide 12/67



D.M. Cerna Computational Proof Theory June 25th 2024

Herbrand Universe

▶ Let C be a finite set of clauses.

▶ CS(C ) and FS(C ) denote the constant symbols and function
symbols occuring in C , respectively.

H0 =

{
CS(C ) CS(C ) ̸= ∅
{a} if CS(C ) = ∅

Hi = Hi−1 ∪ {f (t1, · · · tn)|f ∈ FS(C ) , t1, · · · tn ∈ Hi−1}

▶ H(C ) =
⋃∞

i=0Hi .

▶ We refer to H(C ) as the Herbrand universe of C .

slide 13/67



D.M. Cerna Computational Proof Theory June 25th 2024

Herbrand Universe

▶ Consider the clause set

{(¬P(x) ∨ P(f (x))) , P(h(x , x)) , (¬P(h(u, v)) ∨ ¬Q(v))}

H0 = {a}

H1 = {a, f (a), h(a, a)}

H2 = {a, f (a), f (f (a)), f (h(a, a)), h(a, a), h(f (a), a), h(a, f (a))

h(f (a), f (a)), h(f (a), h(a, a)), h(h(a, a), f (a)), h(h(a, a), h(a, a))}

▶ Essentially, it is the set of terms constructable from the
symbols occurring in the clause set.

▶ Using the Herbrand universe we can construct a Herbrand
interpretation.

▶ An interpretation with domain H(C ) and interpretation
function mapping the constructors to themselves.

slide 14/67



D.M. Cerna Computational Proof Theory June 25th 2024

H-interpretation correspondence

▶ We will denote interpretations by a triple (D,Φ, I ) where D is
the domain, Φ interpretation function, and I : V → H(C ) the
environment.

▶ We associate with each interpretation (D,Φ, I ) a function
ω : H(C )→ D which is faithful to the construction of the
Herbrand universe.

▶ A corresponding H-interpretation (H(C ),ΦH , J) is an
H-interpretation with the following condition on ΦH :

ΦH(P)(t1, · · · , tn) = Φ(P)(ω(t1), · · · , ω(tn))

▶ for all P ∈ PS(C ) and ti ∈ H(C )

▶ PS(C ) denotes the predicate symbols of C .

slide 15/67



D.M. Cerna Computational Proof Theory June 25th 2024

Restriction to H-Models

▶ A set of clauses C is satisfiable iff it has an H-Model.

← If C has an H-Model then it is trivially satisfiable.
→ we can instead consider:

If C does not have an H-model then it is unsatisfiable.

▶ This implies that all H-interpretations falsify C .

▶ For any interpretation we can construct a corresponding
H-interpretation.

▶ We need to show that reversing this construction preserves
falsifiability.

▶ There is a d ∈ C which is falsified by the H-Model. In can be
shown by induction over term depth that a ground
substitution of the terms within the clause exists which
coincides with the H-models semantic interpretation.

▶ The rest follows from the construction of a corresponding
H-interpretation.

slide 16/67



D.M. Cerna Computational Proof Theory June 25th 2024

Semantic Trees

▶ The restriction to H-Models depends on grounding the terms
occurring in C .

▶ For a given clause set C and Herbrand universe H(C) we can
construct a so called Semantic tree containing partial truth
assignments of the predicates occurring in C .

•

•

••
Q(f (a)) ¬Q(f (a))

•

••
Q(f (a)) ¬Q(f (a))

P(f (a)) ¬P(f (a))

▶ Every node can be expanded by a positive and negative edge.

▶ The same symbols and tuple of terms is used on each branch
at each expansion step.

▶ Same expansion step cannot be repeated.

slide 17/67



D.M. Cerna Computational Proof Theory June 25th 2024

Semantic Trees

▶ These are not a semantic trees:

•

•

••
Q(a) ¬Q(f (a))

•

P(a, a) ¬P(a, a)

•

•

••
P(f (a)) ¬P(f (a))

•

••
Q(f (a)) ¬Q(f (a))

P(f (a)) ¬P(f (a))

slide 18/67



D.M. Cerna Computational Proof Theory June 25th 2024

Semantic Trees

▶ A complete semantic tree can be built iteratively.

▶ Order the predicate symbols of C and terms of H(C ).

▶ then continuously expand with respect to the order.

▶ After a number of expansion steps a branch may contain a
ground instance which falsifies a clause.

▶ such nodes of the tree are referred to as failure nodes.

▶ failure nodes are not expanded.

▶ If every branch ends in a failure node, then the tree is closed.

slide 19/67



D.M. Cerna Computational Proof Theory June 25th 2024

Semantic Trees

•

•

•

••

P(a, f(a)) ¬P(a, f (a))

•

R(a) ¬R(a)

•

••

R(a) ¬R(a)

P(a, a) ¬P(a, a)

{P(x , f (x)) , ¬P(u, v) ∨ R(u) , ¬R(a)}
slide 20/67



D.M. Cerna Computational Proof Theory June 25th 2024

Semantic trees and unsatisfiably

▶ A set of clauses C is unsatisfiable iff its semantic tree T is
closed.

← T tells us how to build a falsifying H-models.
→ Each branch represents an H-model. We know no H-model

satisfies C thus T must eventually close.

▶ A closed semantic tree T for a set of clauses C is finite.

• For T to be infinite, being that it is finitely branching, there
would have to be an infinite path. But that contradicts the
definition of failure node.

▶ This gives us a crude automated theorem prover, but it is
complete.

slide 21/67



D.M. Cerna Computational Proof Theory June 25th 2024

Semantic Trees and Ground Instances

▶ Notice that a closed semantic tree T of a set of clauses C
proves unsatisfiably by collecting a set of ground instances of
the clauses of C .

▶ This set of ground instances is enough to prove unsatisfiably
of C .

▶ This observation provides a variant of Herbrand’s theorem
(Soon!)

A set of clauses C is unsatisfiable iff there exists a finite
unsatisfiable set of clauses C ′ such that C ′ consists of ground
instances of clauses in C .

▶ The method of Davis and Putnam is based on saturation of
sets of ground instances of clauses.

▶ Resolution improves on this and earlier methods by avoiding
the search for ground instances.

slide 22/67



D.M. Cerna Computational Proof Theory June 25th 2024

Propositional (Ground) Resolution

▶ Let us consider resolution without substitution first:

∆ ∨ C ∆′ ∨ ¬C
Res

∆ ∨ ∆′

▶ Soundness of the rule is easy to observe:

if (∆ ∨ C ) ∧ (∆′ ∨ ¬C ) is true then ∆ ∨ ∆′ is true.

▶ However, an additional step is needed in some cases:

C ∨ C ¬C ∨ ¬C
Res

C ∨ ¬C
▶ (C ∨ C ) ∧ (¬C ∨ ¬C ) is pretty unsatisfiable.

▶ To avoid this issue we need to add a contraction rule (can be
built into the resolution rule).

▶ Often referred to as factoring.

slide 23/67



D.M. Cerna Computational Proof Theory June 25th 2024

Completeness of Propositional Resolution

⋆ If C is an unsatisfiable set of propositional clauses then there
exists a refutation of C .

We can prove this statement by induction on the height of the
semantic tree T of C
Note that H(C ) is trivial for a propositional clause set.

BC If the T has height 1 then C contains ⊥.
SC Assume ⋆ holds for all clause sets C ′ whose tree T ′ is of

height n, we show that the statement holds for C whose tree
T is of height n + 1.

▶ Notice that nodes at level n connect to failure nodes at level
n + 1 through edges labeled by complementary literals.

▶ Let C1 ∨ P and C2 ∨ ¬P be the clauses corresponding to the
failure nodes.

slide 24/67



D.M. Cerna Computational Proof Theory June 25th 2024

Completeness of Propositional Resolution

▶ Using resolution and contraction we can build the clause set
C ∪ {C ′

1 ∨ C ′
2} where

▶ C ′
1 ∨ C ′

2 is equivalent C1 ∨ C2 after contraction.
▶ T ′ is equivalent to T with the failure nodes corresponding to

C1 ∨ P and C2 ∨ ¬P removed.
▶ The node at level n is now a failure node for C ′

1 ∨ C ′
2.

▶ Repeating this process for all nodes at level n we get a
semantic tree of height n.

▶ Hint: Useless edges may have to be removed.

▶ This can be easily generalized from propositional (ground)
clause sets to first-order.

▶ The branches need only contain instances of the clauses in C .

▶ A closed tree can always be grounded.

slide 25/67



D.M. Cerna Computational Proof Theory June 25th 2024

More General Resolution

▶ Consider the clause set:

P(x , f (y)) ∨ P(x , f (x)) , ¬P(x , y) ∨ P(y , x) ,

¬P(x , y) ∨ P(f (x), y) , ¬P(f (f (x)), x)

▶ It can be refuted as follows:
P(x , f (y)) ∨ P(x , f (x)) ¬P(x , y) ∨ P(y , x)

Res
P(f (x), x) ¬P(x , y) ∨ P(f (x), y)

Res
P(f (f (x)), x) ¬P(f (f (x)), x)

Res⊥
▶ Finding the substitution is similar to the search for ground

instantiations.

▶ However, there is a special type of unifier which allows
resolution to be more efficient than ground instantiation
methods.

slide 26/67



D.M. Cerna Computational Proof Theory June 25th 2024

Generality Order

▶ There are may be infinitely many unifiers of two terms.

▶ We may order the unifiers by generality in the following sense.

▶ We say σ1 is more general than σ2, σ1 ≤ σ2, if σ1τ = σ2.

▶ For example,

f (x){x ← g(a, a) , y ← a} = f (g(y , a)){x ← g(a, a) , y ← a}

f (x){x ← g(y , a)} = f (g(y , a)){x ← g(a, a)}

▶ Notice that

{x ← g(y , a) , y ← y}{y ← a} = {x ← g(a, a) , y ← a}

▶ Thus, {x ← g(y , a)} ≤ {x ← g(a, a) , y ← a}

slide 27/67



D.M. Cerna Computational Proof Theory June 25th 2024

Most General Unifier

▶ A unifier σ is an mgu if for all unifiers τ , σ ≤ τ
▶ For first-order term expressions if two terms are unifiable then

there is a unique mgu, up to variable renaming, unifying them.

▶ {x ← g(y , a)} is the mgu for the previous example.

▶ It is decidable if two first-order term expressions have an mgu.

▶ Computing the mgu naively requires exponential time, but it
is computable in nearly linear.

▶ See the Martelli-Montanari Algorithm for unification.

slide 28/67



D.M. Cerna Computational Proof Theory June 25th 2024

Constructing MGUs

▶ By diff (t1, t2) we denote the pairs of subterms (with
matching positions) which do not match when decomposing
t1 and t2 top-down.

▶ For example
diff (g(x, f (a, b), h(b)), g(f(a,b), f (y , b), f (b, b))) contains

(x, f(a,b)) , (a, y) , (h(b), f (b, b))

▶ Notice that (h(b), f (b, b)) cannot be unified and thus, these
two term are not unifiable.

▶ Consider diff (x , f (a, x)) = {(x , f (a, x))}
▶ This seems unifiable, but (x , f (a, x)) implies our mgu ought

to contain the substitution {x ← f (a, x)}.

x{x ← f (a, x)} = f (a, x) ̸= f (a, f (a, x)) = f (a, x){x ← f (a, x)}

▶ Results in an infinite loop.
slide 29/67



D.M. Cerna Computational Proof Theory June 25th 2024

Constructing MGUs

▶ Thus, unification fails if diff (t1, t2) contains
▶ terms with different head symbols.
▶ a pair of the form (x , t[x ]).

Require: σ = Id
while diff (t1σ, t2σ) ̸= ∅ do

if (x , t[x ]), (f (t̄), g(s̄)) ∈ diff (t1σ, t2σ) then
return Fail

else
Select (s, t) ∈ diff (t1σ, t2σ)
if s is a variable then
σ = σ{s ← t}

else
σ = σ{t ← s}

end if
end if

end while
return σ

▶ Exponential behavior occurs because the substitution may
apply to itself, i.e. can build full binary trees.

slide 30/67



D.M. Cerna Computational Proof Theory June 25th 2024

MGUs and Resolution

▶ We can lift MGU to the clausal level by lifting the generality
order to clauses:

• Let C ,D be clauses and C ′,D ′ clauses resulting from C ,D by
contraction. Then C ≤ D implies C ′ ≤ D ′.

• Let C ,D,C ′,D ′ be clauses such that C ≤ C ′ and D ≤ D ′. If
E ′ is the result of resolving C ′ and D ′ then there exists a
resolvent E of C and D with E ≤ E ′.

▶ This statement is usually referred to as the lifting lemma.

▶ We can further generalize the lemma to full resolution
derivations implying that we only need to consider MGUs
when applying resolution.

slide 31/67



D.M. Cerna Computational Proof Theory June 25th 2024

Lifting Theorem

Theorem
Let C be a set of clauses and C ′ be a set of instances of clauses in
C. Let ∆ be a resolution deduction from C ′. Then there exists a
resolution deduction Γ from C such that Γ ≤ ∆.

Theorem (completeness)

If C is an unsatisfiable set of clauses then there exists an resolution
refutation of C .

Proof.
We can lift ground resolution refutations to non-ground resolution
refutation by the lifting theorem.

slide 32/67



D.M. Cerna Computational Proof Theory June 25th 2024

How big can refutations get?

▶ Refutations can be non-elementary in the size of the formula.

• That is faster growing than f (0) = 1 , f (n + 1) = 2f (n)

▶ Statman constructed a sequence of clause sets, using
Combinatory logic, whose refutations grow faster than f (n) .

In “Lower bounds on Herbrand’s theorem”.

▶ Here is an example of a simple but hard to refute clause set:

E (x , a) ∨ E (x , b) ∨ E (x , c) , ¬E (x , a) ∨ ¬E (y , a) ∨ L(s(y), x)

¬E (x , b)∨¬E (y , b)∨L(s(y), x) , ¬E (x , c)∨¬E (y , c)∨L(s(y), x)

¬L(m(x , y), z) ∨ L(x , z) , ¬L(m(x , y), z) ∨ L(y , z) , L(x , x)

▶ Requires the derivation of 100s of clauses to refute.

▶ Many interesting problems can be found at

http://www.tptp.org/

slide 33/67

 http://www.tptp.org/


D.M. Cerna Computational Proof Theory June 25th 2024

Goals

▶ Introduce automated reasoning and the resolution calculus

▶ Completeness of the resolution calculus

▶ the Sequent calculus

▶ Cut-elimination

▶ Eliminating cuts using resolution

slide 34/67



D.M. Cerna Computational Proof Theory June 25th 2024

Background: Gentzen’s Sequent Calculus

▶ The sequent calculus applies inferences to objects referred to
as sequents ∆ ⊢ Π, where ∆ and Π are multisets of
well-formed formula. Chaining inferences forms proof trees.

▶ Semantically, a sequent means given ∆ we may derive Π.

▶ Note that, this interpretation implies that ∆ is essentially a
conjunction of formula and Π is a disjunction.

▶ The sequent calculus inferences are as follows:

Axiom Inferences

Ax
A ⊢ A

slide 35/67



D.M. Cerna Computational Proof Theory June 25th 2024

Gentzen’s Sequent Calculus

Structural Inferences

Γ ⊢ ∆
w:l

D, Γ ⊢ ∆
Γ ⊢ ∆ w:r

Γ ⊢ ∆,D

D,D, Γ ⊢ ∆
c:l

D, Γ ⊢ ∆

Γ ⊢ ∆,D,D
c:r

Γ ⊢ ∆,D

Γ ⊢ ∆,C C , Γ′ ⊢ ∆′
cut

Γ, Γ′ ⊢ ∆,∆′

slide 36/67



D.M. Cerna Computational Proof Theory June 25th 2024

Gentzen’s Sequent Calculus

Logical Inferences

Γ ⊢ ∆,D
¬:l¬D, Γ ⊢ ∆

D, Γ ⊢ ∆ ¬:r
Γ ⊢ ∆,¬D

C , Γ ⊢ ∆
∧:l

C ∧ D, Γ ⊢ ∆

D, Γ ⊢ ∆
∧:l

C ∧ D, Γ ⊢ ∆

Γ ⊢ ∆,C ∨:r
Γ ⊢ ∆,C ∨ D

Γ ⊢ ∆,D ∨:r
Γ ⊢ ∆,C ∨ D

Γ ⊢ ∆,C Γ ⊢ ∆,D ∧:r
Γ ⊢ ∆,C ∧ D

C , Γ ⊢ ∆ D, Γ ⊢ ∆
∨:l

C ∨ D, Γ ⊢ ∆

C , Γ ⊢ ∆,D →:r
Γ ⊢ ∆,C → D

Γ ⊢ ∆,C D, Γ ⊢ ∆
→:l

C → D, Γ ⊢ ∆

slide 37/67



D.M. Cerna Computational Proof Theory June 25th 2024

Gentzen’s Sequent Calculus

Quantifier Inferences

Γ ⊢ ∆,F (α)
∀:r

Γ ⊢ ∆, ∀xF (x)
F (t), Γ ⊢ ∆

∀:l∀xF (x), Γ ⊢ ∆

Γ ⊢ ∆,F (t)
∃:r

Γ ⊢ ∆, ∃xF (x)
F (α), Γ ⊢ ∆

∃:l∃xF (x), Γ ⊢ ∆

▶ Note that for ∃ : l and ∀ : r α may not occur in Γ or ∆. These
rules are referred to as strong quantification, i.e. require an
eigenvariable, the other rules are referred to as weak.

slide 38/67



D.M. Cerna Computational Proof Theory June 25th 2024

Simple Sequent Calculus Proof

P(α) ⊢ P(α)
w:r

P(α) ⊢ P(α),P(β)
=⇒ : r

⊢ P(α),P(α)→ P(β)
∀ : r⊢ P(α), ∀y(P(α)→ P(y))
∃ : r⊢ P(α),∃x∀y(P(x)→ P(y))

w : l
P(a) ⊢ P(α), ∃x∀y(P(x)→ P(y))

=⇒ : r
⊢ P(a)→ P(α),∃x∀y(P(x)→ P(y))

∀ : r⊢ ∀y(P(a)→ P(y)),∃x∀y(P(x)→ P(y))
∃ : r⊢ ∃x∀y(P(x)→ P(y)),∃x∀y(P(x)→ P(y))
c : r

⊢ ∃x∀y(P(x)→ P(y))

slide 39/67



D.M. Cerna Computational Proof Theory June 25th 2024

Sequent Calculus Proof With Cut

▶ Green formulas denote cuts and their ancestors.
▶ The cut rule is used in introduce auxiliary arguments

(Lemmas) into a proof.
▶ That is concepts external to the statement being proven.

slide 40/67



D.M. Cerna Computational Proof Theory June 25th 2024

Proof without Cut

▶ Proofs without cuts are referred to as analytic proofs.
▶ Every formula is a subformula of the end sequent.

▶ Observe that cut is the only rule that removes formula from
the sequent.

▶ If one could derive ⊥ using the sequent calculus, then it would
involve cut.

slide 41/67



D.M. Cerna Computational Proof Theory June 25th 2024

Eliminating Cut:Proof

▶ Gentzen’s Hauptsatz : cuts can be eliminated.
▶ We assume proofs have been Regularized.

▶ Unique eigenvariable for each Strong quantifier.

▶ Additionally, a generalization of the cut rule is used.

Γ ⊢ ∆,C C , Γ ⊢ ∆
mix

Γ′ ⊢ ∆′

where Γ′ and ∆′ are equivalent to Γ and ∆ but with every
instance of C removed.

slide 42/67



D.M. Cerna Computational Proof Theory June 25th 2024

Eliminating Cut: Proof

▶ Assume a proof with a single mix as the last inference

...
Γ ⊢ ∆,C

...
C , Γ ⊢ ∆

mix
Γ′ ⊢ ∆′

▶ The induction is on two properties of C :
▶ Grade: logical complexity of C .
▶ Rank: Distance from introduction. (Not just axiom rule)

slide 43/67



D.M. Cerna Computational Proof Theory June 25th 2024

Eliminating Cut: Proof

▶ Grade is computed as follows:
▶ If F is atomic then G (F ) = 1,
▶ If F = ¬A where A is a formula of arbitrary complexity then

G (F ) = G (A) + 1.
▶ If F = A ⋆B where A and B are formula of arbitrary complexity

and ⋆ ∈ {∧,∨, =⇒ } then G (F ) = G (A) + G (B) + 1,
▶ If F = QxA(x) where A(x) is a formula of arbitrary complexity

and Q ∈ {∃,∀} then G (F ) = G (A) + 1.

▶ Rank is computed as follows:

rankl(P) = max
T

(rank(T ,P))

rankr (P) = max
T

(rank(T ,P))

rank(P) = rankl(P) + rankr (P)

▶ Here T is a thread.
Connected path from P in the cut to it’s introduction.

▶ Contraction creates multiple instances.
slide 44/67



D.M. Cerna Computational Proof Theory June 25th 2024

Eliminating Cut: Rank 2

▶ Atomic formula introduced right before the mix:

A ⊢ A Γ ⊢ ∆
mix

A, Γ′ ⊢ ∆
A ⊢ A Γ ⊢ ∆

mix
Γ ⊢ ∆′,A

▶ A proof without mix is possible using contraction and/or
weakening:

Γ ⊢ ∆
...

Γ′,A ⊢ ∆,A

Γ ⊢ ∆
...

Γ ⊢ ∆′,A

▶ What if A was introduced by weakening?

slide 45/67



D.M. Cerna Computational Proof Theory June 25th 2024

Eliminating Cut: Rank 2

▶ Four cases, only two below:

Γ ⊢ ∆
Γ ⊢ ∆,A Π ⊢ Λ

mix
Γ,Π′ ⊢ ∆,Λ

Π ⊢ Λ
Γ ⊢ ∆

Γ,A ⊢ ∆
mix

Γ,Π ⊢ ∆,Λ′

▶ A proof without mix is possible using weakening:

Γ ⊢ ∆
...

Γ,Π′ ⊢ ∆,Λ

Γ ⊢ ∆
...

Γ,Π ⊢ ∆,Λ′

▶ Now we need to consider logic rules (Still rank 2)?

slide 46/67



D.M. Cerna Computational Proof Theory June 25th 2024

Eliminating Cut: Rank 2

▶ We only consider a few principle cases.

▶ For conjunction we have the following:

Γ ⊢ ∆,B Γ ⊢ ∆,C

Γ ⊢ ∆,B ∧ C

B,Π ⊢ Λ

B ∧ C ,Π ⊢ Λ
mix

Γ,Π′ ⊢ ∆′,Λ
▶ Notice that B occurs both on the left side and right side :

Γ ⊢ ∆,B B,Π ⊢ Λ
mix

Γ,Π′ ⊢ ∆′,Λ

▶ The resulting proof has lower logical complexity and can be
handled by the earlier cases.

slide 47/67



D.M. Cerna Computational Proof Theory June 25th 2024

Eliminating Cut: Rank 2

▶ We only consider a few principle cases.

▶ For the universal quantifier we have the following:

Γ ⊢ ∆F (a)

Γ ⊢ ∆, ∀xF (x)
F (t),Π ⊢ Λ

∀xF (x),Π ⊢ Λ
mix

Γ,Π′ ⊢ ∆′,Λ
▶ We can replace the eigenvariable by the term on the right side

(remember regularization)

Γ ⊢ ∆,F (t) F (t),Π ⊢ Λ
mix

Γ,Π′ ⊢ ∆′,Λ

▶ The resulting proof has lower logical complexity and can be
handled by the earlier cases.

slide 48/67



D.M. Cerna Computational Proof Theory June 25th 2024

Eliminating Cut: Rank > 2

▶ Consider the case of an atomic formula

Γ ⊢ ∆,A Π,A ⊢ Λ
mix

Γ,Π′ ⊢ ∆′,Λ
▶ The rank is the maximum thread length.

▶ We can reduce it by introducing contractions prior to the mix

Γ ⊢ ∆
...

Γ ⊢ ∆∗,A

Π ⊢ Λ
...

A,Π∗ ⊢ Λ
mix

Γ,Π′ ⊢ ∆′,Λ

▶ The resulting proof has a lower rank with respect to A and
can be handled by the earlier cases.

slide 49/67



D.M. Cerna Computational Proof Theory June 25th 2024

Eliminating Cut: Rank > 2

▶ Consider structural rules (contraction and Weakening):

Γ ⊢ ∆

Φ ⊢ Ψ
J

Π ⊢ Λ
mix

Γ,Π′ ⊢ ∆′,Λ

▶ the main fromula of J cannot be the same as the mix (rank 2
case)

Γ ⊢ ∆ Φ ⊢ Ψ
mix

Γ,Φ∗ ⊢ ∆∗,Ψ
J

Γ,Π∗ ⊢ ∆∗,Λ

▶ We can move the mix above J and reduce the rank.

▶ The resulting proof has a lower rank with respect to the main
formula of the mix

slide 50/67



D.M. Cerna Computational Proof Theory June 25th 2024

Eliminating Cut: Rank > 2

▶ Consider binary logic rules:

Γ ⊢ ∆

C ,Π1 ⊢ Λ1 Π2 ⊢ Λ2,B →: l
B → C ,Π1,Π2 ⊢ Λ1,Λ2

mix
Γ,Π∗

1,Π
∗
2 ⊢ ∆∗,Λ1,Λ2

▶ The main formula of the mix is contained in both Π1 and Π2

Γ ⊢ ∆ C ,Π1 ⊢ Λ1
mix

C , Γ,Π∗
1 ⊢ ∆∗,Λ1

Γ ⊢ ∆ Π2 ⊢ Λ2,B
mix

Γ,Π∗
2 ⊢ ∆∗,Λ2,B →: l

B → C , Γ,Π∗
1,Π

∗
2 ⊢ ∆∗,Λ1Λ2

▶ This introduces an additional mix, but the rank is reduced.

▶ The induction hypothesis holds on the two branches.

slide 51/67



D.M. Cerna Computational Proof Theory June 25th 2024

Eliminating Cut: Rank > 2

▶ Consider the existential quantifier:

Γ ⊢ ∆

F (a),Π ⊢ Λ

∃xF (x),Π ⊢ Λ
mix

Γ,Π∗ ⊢ ∆∗,Λ
▶ If regularized a fresh eignenvariable is unnecessary.

Γ ⊢ ∆

Γ ⊢ ∆ F (b),Π ⊢ Λ
mix

F (b), Γ,Π∗ ⊢ ∆∗,Λ

∃xF (x), Γ,Π∗ ⊢ ∆∗,Λ

Γ,Π∗ ⊢ ∆∗,Λ

▶ Swapping the quantifier rule and mix reduces rank.

slide 52/67



D.M. Cerna Computational Proof Theory June 25th 2024

Eliminating Cut: Algorithm

▶ The above rules only apply to the upper most mix (cut).

▶ To eliminate cuts from proofs we first eliminate the upper
most cuts.

▶ Then we incrementally proceed towards the root.
▶ What’s the complexity of the algorithm??

“Don’t Eliminate Cut” by George Boolos

▶ Eliminating cut can produce a proof with size
non-elementarily larger than the input proof!!

▶ Remember the refutation from earlier?

▶ Then What is it good for?

slide 53/67



D.M. Cerna Computational Proof Theory June 25th 2024

Eliminating Cut: Algorithm

▶ The above rules only apply to the upper most mix (cut).

▶ To eliminate cuts from proofs we first eliminate the upper
most cuts.

▶ Then we incrementally proceed towards the root.
▶ What’s the complexity of the algorithm??

“Don’t Eliminate Cut” by George Boolos

▶ Eliminating cut can produce a proof with size
non-elementarily larger than the input proof!!

▶ Remember the refutation from earlier?

▶ Then What is it good for?

slide 53/67



D.M. Cerna Computational Proof Theory June 25th 2024

Cut-freeness and the Herbrand Instances

Theorem (Mid-Sequent Theorem)

Let S be a sequent of prenex formulas then there exists a cut-free
proof π of S s.t. π contains a sequent S ′ s.t.

▶ S ′ is quantifier free.

▶ Every inference above S ′ is structural or propositional.

▶ Every inference below S ′ is structural or a quantifier inference.

What if we limit S to a sequent only containing weak
quantification.

We can generalize Skolemization from clause sets to proofs.

slide 54/67



D.M. Cerna Computational Proof Theory June 25th 2024

Cut-freeness and the Herbrand Instances

▶ No strong quantification means no eigenvariables and thus all
terms are existential witnesses.

▶ Collecting those witnesses gives us Herbrand’s Theorem

Theorem (Herbrand’s Theorem)

Let S be a sequent of the form ∀x̄φ(x̄) ⊢ ∃x̄ψ(x̄). S is valid if and
only if there exists a sequence of term vectors t̄1, · · · , t̄n s.t.

k∧
i=0

φ(t̄i ) ⊢
k∨

i=0

ψ(t̄i )

is valid.

▶ Cut-free (weakly quantified end sequent) =⇒ weak
mid-sequent =⇒ Herbrand instances.

slide 55/67



D.M. Cerna Computational Proof Theory June 25th 2024

Cut-freeness and the Herbrand Instances

▶ No strong quantification means no eigenvariables and thus all
terms are existential witnesses.

▶ Collecting those witnesses gives us Herbrand’s Theorem

Theorem (Herbrand’s Theorem)

Let S be a sequent of the form ∀x̄φ(x̄) ⊢ ∃x̄ψ(x̄). S is valid if and
only if there exists a sequence of term vectors t̄1, · · · , t̄n s.t.

k∧
i=0

φ(t̄i ) ⊢
k∨

i=0

ψ(t̄i )

is valid.

▶ Cut-free (weakly quantified end sequent) =⇒ weak
mid-sequent =⇒ Herbrand instances.

slide 55/67



D.M. Cerna Computational Proof Theory June 25th 2024

Cut-freeness and the Herbrand Instances

▶ No strong quantification means no eigenvariables and thus all
terms are existential witnesses.

▶ Collecting those witnesses gives us Herbrand’s Theorem

Theorem (Herbrand’s Theorem)

Let S be a sequent of the form ∀x̄φ(x̄) ⊢ ∃x̄ψ(x̄). S is valid if and
only if there exists a sequence of term vectors t̄1, · · · , t̄n s.t.

k∧
i=0

φ(t̄i ) ⊢
k∨

i=0

ψ(t̄i )

is valid.

▶ Cut-free (weakly quantified end sequent) =⇒ weak
mid-sequent =⇒ Herbrand instances.

slide 55/67



D.M. Cerna Computational Proof Theory June 25th 2024

An Herbrand Sequent

▶ Consider the sequent F ⊢ where F contains:

n∨
i=0

f (x) = 0 ∨ f (x) = 1,

s(x) ̸≤ y ∨ f (x) ̸= 0 ∨ f (y) ̸= 0

s(x) ̸≤ y ∨ f (x) ̸= 1 ∨ f (y) ̸= 1

max(x , y) ≤ z → x ≤ z

max(x , y) ≤ z → y ≤ z

∀x(x ≤ x)

▶ Note that F ⊢ is provable.

▶ and we can prove it without cut.

▶ what does the Herbrand sequent look like?

slide 56/67



D.M. Cerna Computational Proof Theory June 25th 2024

An Herbrand Sequent

slide 57/67



D.M. Cerna Computational Proof Theory June 25th 2024

How else to think about cut?

▶ How different are these two rules?

Γ ⊢ ∆,C C , Γ′ ⊢ ∆′
cut

Γ, Γ′ ⊢ ∆,∆′
Γ ⊢ ∆,C D, Γ ⊢ ∆

→:l
C → D, Γ ⊢ ∆

▶ What if we replace cuts by →:l

Γ ⊢ ∆,C C , Γ′ ⊢ ∆′
cut?

Γ, Γ′,C → C ⊢ ∆,∆′

slide 58/67



D.M. Cerna Computational Proof Theory June 25th 2024

How else to think about cut?

...
...

cut?
Γ,C1 → C1, · · · ,Cn → Cn ⊢ ∆

▶ What if we drop the context Γ and ∆?

...
...

cut?
C1 → C1, · · · ,Cn → Cn ⊢

▶ Tautology in the antecedent ⇒ Contradiction (Unsatisfiable)

▶ We have seen this before... Resolution

▶ Can we exploit this?

slide 59/67



D.M. Cerna Computational Proof Theory June 25th 2024

Characteristic Formula Extraction

cut 

∆⊢Π

LK-Proof with cuts

cut 

Paths to cut ancestors

CL(A⊢A)≡{A}
CL(A⊢A)≡{¬A}

CL(A⊢A)≡{¬A∨A}

CL

(
∆ ⊢ Π ρ
∆′ ⊢ Π′

)
≡ CL(∆ ⊢ Π)

CL

(
∆ ⊢ Π ∆′ ⊢ Π′

ρ
∆′′ ⊢ Π′′

)
≡

 CL(∆ ⊢ Π) ∧ CL(∆′ ⊢ Π′)

CL(∆ ⊢ Π) ∨ CL(∆′ ⊢ Π′)

▶ The result is a formula which can be transformed into a clause
set.

▶ Always unsatisfiable.

slide 60/67



D.M. Cerna Computational Proof Theory June 25th 2024

Refuting the Characteristic Formula

slide 61/67



D.M. Cerna Computational Proof Theory June 25th 2024

Refuting the Characteristic Formula

slide 62/67



D.M. Cerna Computational Proof Theory June 25th 2024

Refuting the Characteristic Formula

...
Res

CL(Π) ⊢

▶ Using Herbrand’s Theorem we build the following LK-proof.

...
CL(Π)σ1, · · · ,CL(Π)σn ⊢

▶ This is still not an LK-proof of the original sequent.

▶ We need the following proof Projections

...
∆ ⊢ CL(Π),Σ

slide 63/67



D.M. Cerna Computational Proof Theory June 25th 2024

Refuting the Characteristic Formula

Π

Ax
A ⊢ A

Projection

Ax⊢ A,¬A

Ax
A ⊢ A

Ax⊢ A,A

Ax
A ⊢ A

Ax⊢ A ∨ ¬A

slide 64/67



D.M. Cerna Computational Proof Theory June 25th 2024

Refuting the Characteristic Formula

Π

Π,A ⊢ Σ Π,B ⊢ Σ
∨ : l

Π,A ∨ B ⊢ Σ

Projection

Π ⊢ A,Σ Π ⊢ B,Σ
∨ : l

Π ⊢ A ∨ B,Σ

Π,A ⊢ Σ Π,B ⊢ Σ
∨ : l

Π,A ∨ B ⊢ Σ

ΠA ⊢ C1,Σ ΠB ⊢ C2,Σ ∨ : l
Π ⊢ C1 ∨ C2,Σ

▶ Unary rules do not change anything.

▶ Strong quantifiers on cut ancestors are dropped.

slide 65/67



D.M. Cerna Computational Proof Theory June 25th 2024

Propositional Cuts Only

...
∆ ⊢ CL(Π)σ1,Σ

...
CL(Π)σ1, · · · ,CL(Π)σn ⊢

∆,CL(Π)σ2, · · · ,CL(Π)σn ⊢ Σ

...
∆ ⊢ CL(Π)σ2,Σ

∆,∆,CL(Π)σ3, · · · ,CL(Π)σn ⊢ Σ,Σ

...
∆, · · · ,∆ ⊢ Σ, · · · ,Σ

...
∆ ⊢ Σ

slide 66/67



D.M. Cerna Computational Proof Theory June 25th 2024

Propositional Cuts Only

▶ Proof might not be cut-free

▶ Observe: propositional cuts do not obfuscate Herbrand
instances.

▶ We could avoid this construction by projecting to the clauses
of CL(Π).

▶ Projection computation is more complex.
▶ Method works for other logics:

▶ Intuitionistic Logic
▶ Gödel Logic
▶ Higher-order Logic

slide 67/67


