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Preview
Editing, parsing, processing and proof checking of a mathematical text like the
following in the Naproche system:

Definition. P is the class of prime natural numbers.

Theorem. (Euclid) P is infinite.

Proof. Assume that r is a natural number and p is a sequence of
length r and fp1; : : : ; prg is a subclass of P.
(1) pi is a nonzero natural number for every i2dom(p).
Consider n= p1���pr+1. p1���pr is nonzero. Hence n is nontrivial.
Take a prime divisor q of n.
Let us show that q=/ pi for all natural numbers i such that 1� i�r.
Proof by contradiction. Assume the contrary. Take a natural number
i such that 1� i � r and q = pi. q is a divisor of n and q is
a divisor of p1� � �pr (by Factorproperty,1). Thus q divides 1. Con-
tradiction. qed.
Hence fp1; : : : ; prg is not the class of prime natural numbers. �



Preview

- Mathematical language(s)

- (Many) informal and formal languages

- First-order logic and set theory

- ForTheL as a controlled language for mathematics

- Naproche system for proof-checking ForTheL texts



Natural mathematical statements

- Euclid: �Prime numbers are more than any assigned multitude of prime numbers.�

- Standard form today: �There are infinitely many prime numbers.�

- Capturing the quantification �infinitely many� in set theory:

Definition. P is the class of prime natural numbers.

Theorem. (Euclid) P is infinite.



Mathematical symbolism and LATEX

Definition. P is the class of prime natural numbers.

Theorem. (Euclid) P is infinite.

- Defined words and phrases like �prime number�, with meanings that may differ
from their natural language interpretation

- Specific (defined) symbols like P; x
y
;
R
; : : :

- Mathematical typesetting using LATEX:

\begin{definition} $\Primes$ is the class of prime natural numbers.
\end{definition}

\begin{theorem}[Euclid]
$\Primes$ is infinite.
\end{theorem}



First-order formalism

Definition. P is the class of prime natural numbers.

Theorem. (Euclid) P is infinite.

- 8x (x2P$prim(x))

- inf (P)



First-order logic (FOL)

- A language (in the sense of FOL) is a set S of function symbols and relation
symbols

- The set T S of S-terms is the smallest set such that
- x2T S for all variables x= v0; v1;: : :
- ft0 :::tn¡12T S for all n2N, all n-ary function symbols f 2S, and all t0;:::;

tn¡12T S

- The set LS of S-formulas is the smallest set such that
- t0� t12LS for all S-terms t0; t12T S

- Rt0 :::tn¡12LS for all n2N, all n-ary relation symbols R2S, and all t0;:::;
tn¡12T S

- :'2LS for all '2LS
- ('!  )2LS for all ';  2LS
-8x'2LS for all '2LS and all variables x

- Further notations like ('^  ) or ('_  ) can be introduced as abbreviations



First-order logic

- 8x8"> 09� > 08x0 (jx0¡xj<�!jf(x0)¡ f(x)j<")

- Mathematics can be carried out in set theory which can be axiomatized in first-
order logic

- First-order Logic satisfies the Gödel completeness theorem (theoretical basis for
formal mathematics)

- First-order Logic is the strongest logic which satisfies the compactness theorem
and the Löwenheim-Skolem theorem (Lindström)

- Herbrand's theorem leads to practically efficient formal proving: automated the-
orem proving (ATP) and interactive theorem proving (ITP)



Defining FOL in Backus-Naur form

- var ! �v0� | �v1� | . . .

- term! var | �f � {term}

- formula! term �=� term | �R� {term} | �:� formula
| �(� formula �!� formula �)� | �8� var formula



FOL within Naproche 2023 (Haskell)

- term! var | �f � {term}

- formula! term �=� term | �R� {term} | �:� formula | �(� formula �!� formula
�)� |

�8� var formula

corresponds to the following Haskell data type:

data Formula =
All Decl Formula | Exi Decl Formula |
Iff Formula Formula | Imp Formula Formula |
Or Formula Formula | And Formula Formula |
Tag Tag Formula | Not Formula |
Top | Bot |
Trm { trmName :: TermName, trmArgs :: [Formula]} |
Var { varName :: VariableName, . . . , varPosition ::

Position.T }



Symbolic FO statements in ForTheL

in Andrei Paskevich: The syntax and semantics of the ForTheL language, http://
nevidal.org/download/forthel.pdf

symbStatement ! forall classRelation symbStatement
| exists classRelation symbStatement
| symbStatement <=> symbStatement
| symbStatement => symbStatement
| symbStatement \/ symbStatement
| symbStatement /\ symbStatement
| not symbStatement
| ( statement )
| primRelation



Parsing symbolic formulas in Naproche 2023

A symbolic formula like

:'!  

is parsed, from left to right, by the parser symbolicFormula which is defined as
a deeply nested combination of other parsers:

symbolicFormula :: FTL Formula
symbolicFormula = biimplication
where
biimplication = implication >>= binary Iff (symbolicIff >> implication)
implication = disjunction >>= binary Imp (symbolicImp >> implication)
. . .
nonbinary = universal -|- existential -|- negation -|- separated -|- atomic
negation = Not <$> (symbolicNot >> nonbinary)
. . .
binary op p f = optLL1 f $ fmap (op f) p

symbolicIff = symbol "<=>" <|> token "\\iff"
symbolicImp = symbol "=>" <|> token "\\implies"
. . .
atomic = relation -|- parenthesised (optInText statement)
. . .



English as a formal language

- proposed by Richard Montague 1970

- formal grammars and parsers for (a subset) of English

- influential and much disputed in linguistics and philosophy

- controlled natural language (CNL), defined by grammatical rules for natural
english phrases



Mathematical English as a formal language

- mathematical texts are distinctively more formal than ordinary texts

- a mathematical CNL may be acceptable to mathematicians

- the controlled natural language ForTheL by A. Paskevich and others and developed
further by the Naproche project tries to approximate mathematical English



A Backus-Naur grammar for ForTheL

The statement �P is infinite� can be parsed by a the following rules

simpleStatement ! terms doesPredicate { and doesPredicate }
terms ! term { ( , | and ) term }
term! [ ( ] quantifiedNotion [ ) ] | definiteTerm

definiteTerm! [ ( ] [ the ] primDefiniteNoun [ ) ] | symbTerm . . .

doesPredicate ! [ does | do ] [ not ] primVerb
| [ does | do ] [ not ] [ pairwise ] primVerbM
| ( has | have ) hasPredicate
| ( is | are | be ) isPredicate { and isPredicate }
| ( is | are | be ) is_aPredicate { and is_aPredicate }

isPredicate ! [ not ] primAdjective | . . .

primAdjective ! infinite



A parse tree for �P is infinite�

simpleStatement

terms

term

definiteTerm

symbolicTerm

�P�

doesPredicate

�is� isPredicate

primAdjective

�infinite�



First-order translations of �P is infinite� by Naproche

Pretty-printed first-order translation

isInfinite(\Primes)

Translation into TPTP format for further processing by ATPs, in particular by E:

fof(m__,conjecture, . . . => isInfinite(sbszPzrzizmzezs))).



DEMO:
Andrei Paskevich's The syntax and semantics of the
ForTheL language

http://nevidal.org/download/forthel.pdf



DEMO:
Installing Isabelle/Naproche

https://isabelle.in.tum.de/



DEMO:
The Naproche tutorial

via Isabelle Documentation (left sidebar) and $ISABELLE_NAPROCHE/Intro.thy



Takeaways

- It is in principle possible to combine natural language processing (NLP) with
strong automated theorem proving (ATP) to achieve ITP of natural, readable texts

- Naproche can handle some textbook-style texts abouts numbers, algebra, set
theory, 12 of 100 �Wiedijk theorems�, the definition of perfectoid rings, . . .

- Naproche shows that formalization languages in Formal Mathematics generally
could be made more natural and readable

- On the other hand, Naproche formalizations are challenging, since they require
attention to natural language criteria and LATEX issues on top of standard ITP work

- To overcome long proof-checking times and slow interactivity, and other issues,
Adrian De Lon is working on a new implementation ofNaproche, called Naproche-
ZF (see his lecture on Thursday)



Links
Homepage: https://naproche.github.io/index.html

Download: https://isabelle.in.tum.de/

Naproche on the Web: https://naproche.github.io/try/#/

Documentation:

Andrei Paskevich: The syntax and semantics of the ForTheL language, http://
nevidal.org/download/forthel.pdf

De Lon, A., Koepke, P., Lorenzen, A., Marti, A., Schütz, M., Wenzel, M. (2021).
The Isabelle/Naproche Natural Language Proof Assistant. In: CADE 2021. Lecture
Notes in Computer Science(), vol 12699. Springer

Naproche Tutorial , within Isabelle at $ISABELLE_NAPROCHE/examples/
TUTORIAL.ftl.pdf



Thank you!
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