Natural Language Proving with Naproche

by Peter Koepke

University of Bonn, Germany

EuroProofNet Summer School on AI for Reasoning and Processing of Mathematics

Kutaisi International University

25 June 2024

Preview

Editing, parsing, processing and proof checking of a mathematical text like the following in the \mathbb{N} aproche system:

Definition. \mathbb{P} is the class of prime natural numbers.

Theorem. (Euclid) \mathbb{P} is infinite.

Proof. Assume that r is a natural number and p is a sequence of length r and $\{p_1, \ldots, p_r\}$ is a subclass of \mathbb{P} . (1) p_i is a nonzero natural number for every $i \in \text{dom}(p)$. Consider $n = p_1 \cdots p_r + 1$. $p_1 \cdots p_r$ is nonzero. Hence n is nontrivial. Take a prime divisor q of n. Let us show that $q \neq p_i$ for all natural numbers i such that $1 \leq i \leq r$. Proof by contradiction. Assume the contrary. Take a natural number i such that $1 \leq i \leq r$ and $q = p_i$. q is a divisor of n and q is a divisor of $p_1 \cdots p_r$ (by Factorproperty,1). Thus q divides 1. Contradiction. qed.

Hence $\{p_1, \ldots, p_r\}$ is not the class of prime natural numbers. \Box

Preview

- Mathematical language(s)
- (Many) informal and formal languages
- First-order logic and set theory
- ForTheL as a controlled language for mathematics
- $\mathbb N$ aproche system for proof-checking ForTheL texts

Natural mathematical statements

- Euclid: "Prime numbers are more than any assigned multitude of prime numbers."
- Standard form today: "There are infinitely many prime numbers."
- Capturing the quantification "infinitely many" in set theory:

Definition. \mathbb{P} is the class of prime natural numbers.

Theorem. (Euclid) \mathbb{P} is infinite.

Mathematical symbolism and L^AT_EX

Definition. \mathbb{P} is the class of prime natural numbers.

Theorem. (Euclid) \mathbb{P} is infinite.

- Defined words and phrases like "prime number", with meanings that may differ from their natural language interpretation

- Specific (defined) symbols like $\mathbb{P}, \frac{x}{u}, \int, \dots$
- Mathematical typesetting using $L^{AT}EX$:

\begin{definition} \$\Primes\$ is the class of prime natural numbers. \end{definition}

```
\begin{theorem}[Euclid]
$\Primes$ is infinite.
\end{theorem}
```

First-order formalism

Definition. \mathbb{P} is the class of prime natural numbers.

Theorem. (Euclid) \mathbb{P} is infinite.

- $\forall x \ (x \in \mathbb{P} \leftrightarrow \operatorname{prim}(x))$

- $\inf(\mathbb{P})$

First-order logic (FOL)

- A $\mathit{language}$ (in the sense of FOL) is a set S of function symbols and relation symbols

- The set $T^{\cal S}$ of ${\cal S}\text{-terms}$ is the smallest set such that

- $x \in T^S$ for all variables $x = v_0, v_1, \ldots$

- $ft_0 \dots t_{n-1} \in T^S$ for all $n \in \mathbb{N}$, all *n*-ary function symbols $f \in S$, and all $t_0, \dots, t_{n-1} \in T^S$

- The set L^S of S-formulas is the smallest set such that

- $t_0 \equiv t_1 \in L^S$ for all S-terms $t_0, t_1 \in T^S$

- $Rt_0 \dots t_{n-1} \in L^S$ for all $n \in \mathbb{N}$, all *n*-ary relation symbols $R \in S$, and all $t_0, \dots, t_{n-1} \in T^S$

-
$$\neg \varphi \in L^S$$
 for all $\varphi \in L^S$

$$(\varphi \rightarrow \psi) \in L^S$$
 for all $\varphi, \psi \in L^S$

 $-\forall x \, \varphi \in L^S \text{ for all } \varphi \in L^S \text{ and all variables } x$

- Further notations like $(\varphi \land \psi)$ or $(\varphi \lor \psi)$ can be introduced as abbreviations

First-order logic

 $- \forall x \forall \varepsilon > 0 \exists \delta > 0 \forall x' \left(|x' - x| < \delta \rightarrow |f(x') - f(x)| < \varepsilon \right)$

- Mathematics can be carried out in set theory which can be axiomatized in firstorder logic

- First-order Logic satisfies the Gödel completeness theorem (theoretical basis for formal mathematics)

- First-order Logic is the strongest logic which satisfies the compactness theorem and the Löwenheim-Skolem theorem (Lindström)

- Herbrand's theorem leads to practically efficient formal proving: *automated* theorem proving (ATP) and *interactive* theorem proving (ITP)

Defining FOL in Backus-Naur form

- $var \to "v_0" | "v_1" | \dots$
- term \rightarrow var | "f" {term}
- formula \rightarrow term "=" term | "R" {term} | " \neg " formula | " \forall " var formula ") var formula

FOL within Naproche 2023 (Haskell)

```
- term \rightarrow var | "f" {term}
```

```
- formula \rightarrow term "=" term | "R" {term} | "\neg" formula | "(" formula "\rightarrow" formula ")" |
"\forall" var formula
```

corresponds to the following Haskell data type:

```
data Formula =
  All Decl Formula | Exi Decl Formula |
  Iff Formula Formula | Imp Formula Formula |
  Or Formula Formula | And Formula Formula |
  Tag Tag Formula | Not Formula |
  Top | Bot |
  Trm { trmName :: TermName, trmArgs :: [Formula]}
  Var { varName :: VariableName, ..., varPosition ::
  Position.T }
```

Symbolic FO statements in ForTheL

in Andrei Paskevich: The syntax and semantics of the ForTheL language, http://
nevidal.org/download/forthel.pdf

symbStatement → forall classRelation symbStatement | exists classRelation symbStatement | symbStatement <=> symbStatement | symbStatement => symbStatement | symbStatement \/ symbStatement | not symbStatement | not symbStatement | (statement) | primRelation

Parsing symbolic formulas in Naproche 2023

A symbolic formula like

 $\neg \varphi \rightarrow \psi$

is parsed, from left to right, by the parser symbolicFormula which is defined as a deeply nested combination of other parsers:

```
symbolicFormula :: FTL Formula
symbolicFormula = biimplication
  where
    biimplication = implication >>= binary Iff (symbolicIff >> implication)
                  = disjunction >>= binary Imp (symbolicImp >> implication)
    implication
    . . .
   nonbinary = universal - |- existential - |- negation - |- separated - |- atomic
                  = Not <$> (symbolicNot >> nonbinary)
    negation
    . . .
    binary op p f = optLL1 f $ fmap (op f) p
    symbolicIff = symbol "<=>" <|> token "\\iff"
    symbolicImp = symbol "=>" <|> token "\\implies"
    . . .
    atomic = relation - | - parenthesised (optInText statement)
    . . .
```

English as a formal language

- proposed by Richard Montague 1970
- formal grammars and parsers for (a subset) of English
- influential and much disputed in linguistics and philosophy
- controlled natural language (CNL), defined by grammatical rules for natural english phrases

Mathematical English as a formal language

- mathematical texts are distinctively more formal than ordinary texts
- a mathematical CNL may be acceptable to mathematicians

- the controlled natural language ForTheL by A. Paskevich and others and developed further by the \mathbb{N} aproche project tries to approximate mathematical English

A Backus-Naur grammar for ForTheL

The statement " \mathbb{P} is infinite" can be parsed by a the following rules

 $\begin{array}{l} \textit{simpleStatement} \rightarrow \textit{terms doesPredicate} \ \{ \textit{ and doesPredicate} \ \} \\ \textit{terms} \rightarrow \textit{term} \ \{ (\ , \ | \textit{ and }) \textit{ term} \ \} \\ \textit{term} \rightarrow [\ (\] \textit{ quantifiedNotion} \ [\) \] \ | \textit{ definiteTerm} \end{array}$

 $definiteTerm \rightarrow [(][the] primDefiniteNoun[)] | symbTerm ...$

```
doesPredicate → [ does | do ] [ not ] primVerb
| [ does | do ] [ not ] [ pairwise ] primVerbM
| ( has | have ) hasPredicate
| ( is | are | be ) isPredicate { and isPredicate }
| ( is | are | be ) is_aPredicate { and is_aPredicate }
```

 $isPredicate \rightarrow [not] primAdjective | \dots$

```
primAdjective \rightarrow infinite
```

A parse tree for " \mathbb{P} is infinite"

First-order translations of " \mathbb{P} is infinite" by \mathbb{N} aproche

Pretty-printed first-order translation

isInfinite(\Primes)

Translation into TPTP format for further processing by ATPs, in particular by E:

fof(m__,conjecture, . . . => isInfinite(sbszPzrzizmzezs))).

DEMO: Andrei Paskevich's The syntax and semantics of the ForTheL language

http://nevidal.org/download/forthel.pdf

DEMO: Installing Isabelle/Naproche

https://isabelle.in.tum.de/

DEMO: The Naproche tutorial

via Isabelle Documentation (left sidebar) and \$ISABELLE_NAPROCHE/Intro.thy

Takeaways

- It is in principle possible to combine natural language processing (NLP) with strong automated theorem proving (ATP) to achieve ITP of natural, readable texts

- \mathbb{N} aproche can handle some textbook-style texts abouts numbers, algebra, set theory, 12 of 100 "Wiedijk theorems", the definition of perfectoid rings, ...

- $\mathbb N$ approche shows that formalization languages in Formal Mathematics generally could be made more natural and readable

- On the other hand, Naproche formalizations are challenging, since they require attention to natural language criteria and $L^{AT}EX$ issues on top of standard ITP work

- To overcome long proof-checking times and slow interactivity, and other issues, Adrian De Lon is working on a new implementation of \mathbb{N} aproche, called Naproche-ZF (see his lecture on Thursday)

Links

Homepage: https://naproche.github.io/index.html

Download: https://isabelle.in.tum.de/

Naproche on the Web: https://naproche.github.io/try/#/

Documentation:

Andrei Paskevich: *The syntax and semantics of the ForTheL language*, http://nevidal.org/download/forthel.pdf

De Lon, A., Koepke, P., Lorenzen, A., Marti, A., Schütz, M., Wenzel, M. (2021). *The Isabelle/Naproche Natural Language Proof Assistant.* In: CADE 2021. Lecture Notes in Computer Science(), vol 12699. Springer

 $\mathbb{N}\textit{aproche Tutorial},$ within <code>lsabelle at <code>\$ISABELLE_NAPROCHE/examples/TUTORIAL.ftl.pdf</code></code>

Thank you!