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Outline  

1. I will introduce learning in general terms. 
 

2. Theorem-proving (TP): formal mathematical libraries, the 
superposition calculus, and saturation-based theorem provers. 

 
3. Combining AI and TP, focusing on my work and some other gems. 



Caveats  

● My knowledge is imperfect; please forgive mistakes and feel free to 
pitch in if I miss an important detail. 
○ Fortunately, perfect knowledge isn’t needed to contribute to 

state-of-the-art research 😎. 
 

● I’ll focus on my recent PhD research and some related methods, 
which form a significant part of a general overview of the field. 

● I know a lot about AI for Theorem Proving to varying fuzzy degrees 
that may not make it into the slides – feel free to ask!   
○ I may be able to at least point you to sources 🤓. 

 
● I may broadly point to some rabbit holes w/o going down them: 🕳🐇  

 



Learning  

● Learning is the process of acquiring knowledge or skill with 
experience. 

 
● Given:  

○ A domain of possible experiences, D 
○ A parametrized agent, πθ 
○ A task defined by a performance measure, ϕ(Θ,D) → R  

  
○ A learning algorithm L adjusts the agent’s parameters θ such that 

the expected performance over D increases. 
 

● I adapted this from Schmidhuber and Schaul’s Scholarpedia article: Metalearning. 

http://www.scholarpedia.org/article/Metalearning


Learning  

● Learning is the process of acquiring knowledge or skill with 
experience. 

 
● Given:  

○ A domain of possible experiences, D 
○ A parametrized agent, πθ 
○ A task defined by a performance measure, ϕ(Θ,D) → R  

  
○ A learning algorithm L adjusts the agent’s parameters θ such that 

the expected performance over D increases. 
 

Note:  
1. Sometimes measuring loss makes more sense. 
2. Non-statistical notions can also be formulated. 

 



Learning – Examples  

● Is an associative array learning? 
● The data are pairs of keys and values: D = K x V. 
● The task is defined by ϕ(θ,(k,v)) = 1 if πθ(k) == v and 0 otherwise. 
● Prior to building the array, the performance is likely 0 on a training set 

T ⊂ D. 
● After building the array on T, the performance is perfect on T. 

 
● The expected performance on D should be non-zero…. 



Learning – Examples  

● Is an associative array learning? 
● The data are pairs of keys and values: D = K x V. 
● The task is defined by ϕ(θ,(k,v)) = 1 if πθ(k) == v and 0 otherwise. 
● Prior to building the array, the performance is likely 0 on a training set 

T ⊂ D. 
● After building the array on T, the performance is perfect on T. 
● The expected performance on D should be non-zero…. 

 
● So it is learning by this simple definition.  But we want more! 

 
 



Learning – Examples  

● Is an associative array learning? 
● The data are pairs of keys and values: D = K x V. 
● The task is defined by ϕ(θ,(k,v)) = 1 if πθ(k) == v and 0 otherwise. 
● Prior to building the array, the performance is likely 0 on a training set 

T ⊂ D. 
● After building the array on T, the performance is perfect on T. 
● The expected performance on D should be non-zero…. 

 
● Pros: time saved due to indexing? 
● Cons:  

1. Zero generalization to any d ∈ D but not T. 
2. No size compression. 



Learning – Examples  

● Let T = {(6,1), (5,0), (99,0), (100,1), (42,1), (23,0),...} 
● An array could become very large…. 
● The hypothesis that for all pairs, (k,v), v = even(k) fits the dataset 

perfectly where even = lambda x : ((x+1) % 2). 
● This solution may also generalize to new data points. 

 
● Symbolic regression is an approach to learning that could achieve 

this. 
● Program synthesis could, too. 

 

https://en.wikipedia.org/wiki/Symbolic_regression
https://en.wikipedia.org/wiki/Program_synthesis


Learning – Examples  

● Let T = {(6,1), (5,0), (99,0), (100,1), (42,1), (23,0),...} 
● The hypothesis that for all pairs, (k,v), v = even(k) fits the dataset 

perfectly where even = lambda x : ((x+1) % 2). 
 

● Symbolic regression is an approach to learning that could achieve 
this. 

● Program synthesis could, too. 
 

● Pros:  
1. Time and space-wise efficient solutions. 
2. Able to capture the properties of the data distribution 

● Cons:  
1. huge search space 
2. data may not have a lossless compact solution 

https://en.wikipedia.org/wiki/Symbolic_regression
https://en.wikipedia.org/wiki/Program_synthesis


Learning – Examples  

1. This perspective on learning works for clustering algorithms, too. 
2. The agent learns some centroids. 
3. The performance (loss) measure measures the distance from the 

nearest centroid. 
4. Learning aims to minimize the expected loss. 



What is not learning?  

● If building a key-indexed array is bare-minimal “learning”, what 
doesn’t count? 

● Copying a list of data to another directory in the computer? 
● Deleting the dataset (probably won’t improve the performance)? 
● … 🤔 



Do We Need Symbolic Learning?  
1. Consider arithmetic, which LLMs are not that good at [*]: 

● Even if they can do “1+1=2”, is that efficient? 

https://arxiv.org/abs/2304.02015


Do We Need Symbolic Learning?  
1. Consider arithmetic, which LLMs are not that good at [*]: 

● Even if they can do “1+1=2”, is that efficient? 
– No. 
 

● We have efficient hardware and software algorithms for arithmetic. 
 
● At best, LLM-based systems should delegate arithmetic tasks to other 

systems, perhaps via code. 

https://arxiv.org/abs/2304.02015


Do We Need Symbolic Learning?  
2. Even among symbolic solutions, the approach matters.   
● I like the example of Gauss’ technique to sum numbers from 1 to 100. 

 
● Using “+” is 3.4x faster than locally defining an “add x” function. 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● I like the example of Gauss’ technique to sum numbers from 1 to 100. 

 
● Gauss’ nice trick leads to a symbolic solution… is this better? 

https://www.nctm.org/Publications/TCM-blog/Blog/The-Story-of-Gauss/


Do We Need Symbolic Learning?  
2. Even among symbolic solutions, the approach matters.   
● I like the example of Gauss’ technique to sum numbers from 1 to 100. 

 
● Gauss’ nice trick leads to a symbolic solution… is this better? 
● Yes, it’s 9.3x faster! 

○ (But only 2.3x faster than the for loop.) 
 

https://www.nctm.org/Publications/TCM-blog/Blog/The-Story-of-Gauss/


● General problem solving. 
● Helps mathematicians. 
● Helps with the formalization of mathematics. 
● Hardware and software verification. 
● Automated reasoning for general AI systems, hard sciences, etc. 

⚬ Provides the grounding in truthfulness that LLM-based systems lack. 
 

 
 
 

Automated Theorem Proving  



● General problem solving. 
● Helps mathematicians. 
● Helps with the formalization of mathematics. 
● Hardware and software verification. 
● Automated reasoning for general AI systems, hard sciences, etc. 

⚬ Provides the grounding in truthfulness that LLM-based systems lack. 
 
● When an ATP (automated theorem prover) is (refutation) complete, it becomes a 

universal search procedure, technically general AI. 
 
 

Automated Theorem Proving  

http://www.scholarpedia.org/article/Universal_search


● Curry-Howard Correspondence: constructive proofs of mathematical propositions can 
be regarded as programs of the type of the proved proposition. 

● Ex: for a list L, len(L) == len(reverse(L)).  A proof could involve programs to reverse the 
list, measure the length, and check for equality. 

 
 

Proofs as Programs 🕳🐇  

https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence


● Curry-Howard Correspondence: constructive proofs of mathematical propositions can 
be regarded as programs of the type of the proved proposition. 

● Ex: for a list L, len(L) == len(reverse(L)).  A proof could involve programs to reverse the 
list, measure the length, and check for equality. 

 
● Takeaway: theorem proving is related to program synthesis. 

○ Both of which are highly general methods. 
 

Proofs as Programs 🕳🐇  

https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence


● Formal Verification of Large Proofs: 
○ Formal Proof of the Kepler Conjecture (2014 – Hales – 20k lemmas) 
○ Formal Proof of the Feit-Thompson Theorem (2 books, 2012 – Gonthier) 

● Software Verification: 
○ Verification of compilers (CompCert) ‚  
○ Verification of OS microkernels (seL4), HW chips (Intel) 
○ Verification of cryptographic protocols (Amazon), etc. 

● Novel Human-Machine Proofs: 
○ Proof of the  Weak AIM conjecture in loop theory (2021 – Kinyon and Veroff) 
○ Proof of Robbins conjecture that Robbins algebras are Boolean algebras (1996 – 

McCune) 

Automated Theorem Proving: 
Historical successes 

https://en.wikipedia.org/wiki/Robbins_algebra


● Automated Theorem Provers (ATPs) are programs that try to determine if: 
○ A conjecture C is a logical consequence of a set of axioms Ax.  

● Usually use brute-force search within a logical calculus (e.g., resolution, superposition, 
connection/tableaux, inst-gen,...). 

● Systems: E, Vampire, CVC5, Prover9, Z3, iProver, leanCoP… 
● Theoretically complete yet practically run into combinatorial explosions  

○ Thus the need for learning and AI guidance! 
 

 
 
 

Automated Theorem Provers  

http://www.cs.man.ac.uk/~korovink/my_pub/inst_gen_modular.pdf


● Imagine training neural networks to work with visual images without knowing much about 
pictures and sight. 
○ When something goes wrong, making sense of the errors and debugging may be difficult. 

 
● Likewise, when working with formal mathematics, some understanding of the various logical 

languages used can help in various subtle ways. 

Is understanding logic important for applying AI to guide ATPs?  



● Philosophically, logic aims to concretely and syntactically represent human thought and sound 
reasoning. 

What is Logic?  



● Philosophically, logic aims to concretely and syntactically represent rational thought and sound 
reasoning. 

● Q: when does is a statement justified by other statements? 
○ E.g., “Socrates was an animal because he was human and all humans are animals.” 

What is Logic?  



● Q: when does is a statement justified by other statements? 
○ E.g., “Socrates was an animal because he was human and all humans are animals.” 

● Proofs are directed acyclic graphs where each node is a statement and (multi)edges are logical 
inferences. 

What is Logic?  

human(socrates)  ∀X, human(X) → animal(X) 

human(socrates) 



● Q: when does is a statement justified by other statements? 
○ E.g., “Socrates was an animal because he was human and all humans are animals.” 

● Proofs are directed acyclic graphs where each node is a statement and (multi)edges are logical 
inferences. 

What is Logic?  

human(socrates)  ∀X, human(X) → animal(X) 

human(socrates) Note: Proofs are often 
viewed as sequences of 

statements.  



● Consider the Affirming the Disjunct logical fallacy: 
1. I am at home or I am in the city. 
2. I am at home. 
3. Therefore, I am not in the city. 

● Both A and B can be true when (A or B) is true, therefore (not B) cannot be inferred from (A and 
(A or B)). 

What is Logic?  – Negative Example  

https://en.wikipedia.org/wiki/Formal_fallacy#Affirming_a_disjunct


● Propositional Logic:  
○ Deals with propositions that represent the truth value of statements (true or false). 
○ Standard operators: ∧ (“and”), ∨ (“or”), ¬ (“not”), → (“implication”), and ↔ (“equivalence”).   

■ (Both NAND and NOR are functionally complete alone.) 
○ An interpretation assigns meaning to the symbols. 

■ Truth-value semantics allows one to analyze truth tables over propositional variables. 
 

Kinds of Logic  



● Propositional Logic Truth Table: 
 

Kinds of Logic  



● Propositional Logic Example: 
○ Let P :- “Socrates is a man” 
○ Let Q :- “Socrates is an animal” 
○ Then, P → Q :- “If ‘Socrates is a man’, then ‘Socrates is an animal’” 

Kinds of Logic  

P  P → Q 

Q 



● Propositional Logic:  
○ Deals with propositions that represent the truth value of statements (true or false). 
○ Standard operators: ∧ (“and”), ∨ (“or”), ¬ (“not”), → (“implication”), and ↔ (“equivalence”).   

■ (Both NAND and NOR are functionally complete alone.) 
○ An interpretation assigns meaning to the symbols. 

■ Truth-value semantics allows one to analyze truth tables over propositional variables. 
○ A formula is satisfiable if there exists an interpretation such that it’s true. 

■ E.g., P → Q is satisfiable (with “False -> True”) and P ∧ ¬P is not satisfiable. 
○ An interpretation satisfying a (set of) formula(s) is called a model of the formula(s). 

 
● Deciding the satisfiability of propositional formulas is the domain of SAT solvers. 

○ In general, it’s an NP-Complete problem. 

Kinds of Logic  



● First-Order Logic (FOL):  
○ Allows one to employ predicates and to quantify over variables with regard to a universe of 

discourse. 
■ Thus we can now say “all humans are animals”, “∀X, human(X) → animal(X)”. 
■ Predicates allow one to discuss properties of entities and relations among entities. 

○ The existential quantification ∃x P(x) is intended to be true if and only if there is an 
existential witness a in U such that p(a) is true.

○ The universal quantification ∀x P(x) is intended to be true if and only if P(a) is true for every 
element a in U .

○ We also get function symbols to be interpreted as n-ary functions from Un to U.
○ Terms are inductively defined as variables or functions whose arguments are terms.
○ Atomic formulas consist of predicates applied to terms (including equality as a predicate).
○ Well-formed formulas are inductively made of atomic formulas, quantified formulas, and 

compound formulas constructed with propositional connectives (and, or, not…).

Kinds of Logic  



● First-Order Logic (FOL):  
○ Interpretations require additional structure M: 

■ A variable assignment function μ for free variables. 
■ A universe U containing the entities discussed. 
■ A signature of the language, specifying the constant, function, and predicate symbols  

that can be used (and their arities). 
■ An interpretation assigning to each constant an element of U, a function Un to U for 

every n-ary function symbol, and a subset of Un for every n-ary predicate symbol.

● In a given structure, a formula F is: 
● satisfiable if there’s a variable assignment such that F is true.
● valid if it is true in all variable assignments.
● logically valid if it is true in all interpretations.

● M is a model for a theory T (a set of sentences) if it satisfies every sentence in T.
○ Where a sentence is a formula with no free variables.

Kinds of Logic  



● First-Order Logic is pretty well-behaved. 
● Two kinds of logical consequence (implication): 

○ Syntactic consequence: Ax ⊢ F – F can be proved from Ax (in a formal system) 
○ Semantic consequence: A ⊨ F – every model of A is also a model of F. 

● Soundness: syntactic implies semantic consequence. 
● Semantic Completeness: semantic implies syntactic consequence. 

 
● There are multiple formal proof systems for first-order logic that are both sound and complete.  

○ 🥳🎉 
 
● Satisfiability is fully undecidable, but… 
● Logical validity is semi-decidable (like the halting problem): if a sentence is valid, then a decision 

procedure can determine this; but if it is not valid, the procedure may not terminate. 
– This is great news for theorem-proving! 

 

Kinds of Logic  



● Many-Sorted First-Order Logic: we can extend FOL with multiple universes over which variable 
can be quantified. 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● Many-Sorted First-Order Logic: we can extend FOL with multiple universes over which variable 
can be quantified. 

● Second-Order Logic: variables can be instantiated with predicates (‘subsets of the universe’) 
instead of only elements of the universe. 

Kinds of Logic  



● Many-Sorted First-Order Logic: we can extend FOL with multiple universes over which variable 
can be quantified. 

● Second-Order Logic: variables can be instantiated with predicates (‘subsets of the universe’) 
instead of only elements of the universe. 

● Simple Type Theory, Higher-Order Logic (HOL):  
○ Base types: ι for individuals and * for truth values. 
○ Predicates are defined as the type (ι → ∗).  Either an element is in a relation or not. 
○ Function types, (α → β), are defined inductively where α and β are types. 
○ Quantification is restricted by type. 

Interpretation: 
○ Let Dα be the set of all values of type α. 
○ Standard models: function domains, D(α → β), contain all total functions from Dα to Dβ. 
○ General models: function domains may contain non-empty sets of the total functions. 

● With general models, simple type theory is semantically equivalent to first-order logic! 
● (See The Seven Virtues of Simple Type Theory for a good introduction.) 

Kinds of Logic  

https://imps.mcmaster.ca/doc/seven-virtues.pdf


● Intuitionistic/Constructive Logic: classical logic without the law of excluded middle or double 
negation (¬¬A → A). 
○ There are “double negation translations” such that F is provable in classical logic if and only 

if ¬¬F’ is provable in intuitionistic logic! 
● Paraconsistent Logics: aim to develop deductive systems in which the law of explosion is invalid, 

that is, one cannot derive any proposition from a contradiction. 
● Fuzzy Logics: allow truth values to take numerical values between in [0,1]. 
● Probabilistic Logics: aim to extend crisp logical entailment to uncertain, probabilistic inferences. 
● Linear Logics: assign a cost to doing inferences, so that one can reason about resource usage. 
● Modal Logics: allow one to reason about diverse modalities or ‘worlds’ with different  rules of 

operation: e.g., belief, knowledge, possibility, necessity, temporality, and obligation.  

Kinds of Logic  



● Intuitionistic/Constructive Logic: classical logic without the law of excluded middle or double 
negation (¬¬A → A). 
○ There are “double negation translations” such that F is provable in classical logic if and only 

if ¬¬F’ is provable in intuitionistic logic! 
● Paraconsistent Logics: aim to develop deductive systems in which the law of explosion is invalid, 

that is, one cannot derive any proposition from a contradiction. 
● Fuzzy Logics: allow truth values to take numerical values between in [0,1]. 
● Probabilistic Logics: aim to extend crisp logical entailment to uncertain, probabilistic inferences. 
● Linear Logics: assign a cost to doing inferences, so that one can reason about resource usage. 
● Modal Logics: allow one to reason about diverse modalities or ‘worlds’ with different  rules of 

operation: e.g., belief, knowledge, possibility, necessity, temporality, and obligation.  
 
● I hope that work on AI for theorem proving can extend from FOL to most of these logics (as they 

may be helpful in dealing with “the real world”). 

Kinds of Logic  



● Most ATPs and SAT solvers work with formulas in clausal/conjunctive normal form (CNF). 
○ Atomic formulas (and their negations) are called literals. 
○ A clause is a disjunction (“or”) of literals. 
○ Quantifies are moved to the outermost scope. 
○ Existential quantifiers are replaced with Skolem symbols (existential witnesses). 
○ The result is refutationally equivalent, unsatisfiability is preserved. 
○ All variables are implicitly universally quantified. 

 

Clausification: Clausal Normal Form  

human(socrates)  human(X) ∨ ¬animal(X) 

human(socrates) 



● Some of the strongest ATPs use the superposition calculus: Zipperposition, E, Vampire,…. 
● As David showed, they are refutationally complete. 

○ (And, actually, pretty flexible to work with by hand, too!) 
 
● Note that modus ponens (A and A -> B imply B) is a special case of resolution. 

 

Resolution and Superposition Calculi  



● Some of the strongest ATPs use the superposition calculus: Zipperposition, E, Vampire,…. 
● As David showed, they are refutationally complete. 

 
● A substitution σ is a mapping from variables to terms. 
● A unifier of terms t and s is a substitution such that sσ = tσ. 
● A most general unifier (mgu) is one that can be specialized via substitution into any other unifier. 
● We can say that s matches t if there is a substitution such that sσ = t. 
● For FOL, resolution is done with respect to a mgu: σ = mgu(L1 , L2 ). 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● Some of the strongest ATPs use the superposition calculus: Zipperposition, E, Vampire,…. 
● As David showed, they are refutationally complete. 

 
● A substitution σ is a mapping from variables to terms. 
● A unifier of terms t and s is a substitution such that sσ = tσ. 
● A most general unifier (mgu) is one that can be specialized via substitution into any other unifier. 
● We can say that s matches t if there is a substitution such that sσ = t. 
● For FOL, resolution is done with respect to a mgu: σ = mgu(L1 , L2 ). 

 

Resolution and Superposition Calculi  



● The factoring rule unifies literals within a clause. So with σ = mgu(L1, L2 ): 

Resolution and Superposition Calculi  



● The factoring rule unifies literals within a clause. So with σ = mgu(L1, L2 ): 

Resolution and Superposition Calculi  

● Superposition and Paramodulation are fancy terms for combining resolution with equality 
reasoning, the capacity to perform term rewrites. 
○ For example, if “in_prison(masked_man)” (u) and “masked_man = socrates” (s=t), then we 

can apply the equality to derive “in_prison(socrates)”. 
○ The general form is below, where pσ = sσ (trivially in this case): 



Resolution and Superposition Calculi  
● Superposition and Paramodulation are fancy terms for combining resolution with equality 

reasoning, the capacity to perform term rewrites. 
● For general  clauses, such as s = t ∨ S, we can think of this as a “conditional equality”. 

○ If S doesn’t hold, then s = t: ¬S → s = t. 
○ The general paramodulation rule, where σ = mgu(p, s), is:  



Resolution and Superposition Calculi  
● Superposition and Paramodulation are fancy terms for combining resolution with equality 

reasoning, the capacity to perform term rewrites. 
● For general  clauses, such as s = t ∨ S, we can think of this as a “conditional equality”. 

○ If S doesn’t hold, then s = t: ¬S → s = t. 
○ The general paramodulation rule, where σ = mgu(p, s), is:  

● Superposition is a term for paramodulation when its use is done in the context of a reduction 
ordering. 

● A reduction ordering ensures that term rewriting is only done in one direction, usually toward 
smaller terms.  This helps to guarantee completeness of the proof search. 



Saturation-based ATPs  
● The modus operandi of saturation-based theorem provers is to take some Axioms (theory), a 

negated conjecture, and to look for a proof by contradiction. 
● The idea is to keep generating inferences via the superposition calculus until either the empty 

clause (false) is derived or until the search space is saturated, that is, all viable inferences have 
been performed (which may never happen). 

● It’s important to have reduction rules that prune or simplify the clauses:  
○ E.g., the ATP can delete tautologies and subsumed clauses. 

● If the search space is saturated, then there is some model in which the conjecture is false and 
the axioms are true. 



Processed Clauses (P)

Generate
Select

g

Simplify
Evaluate

Unprocessed Clauses (U)

  0. Insert the axioms and negated conjecture to the unprocessed clause set U. 
  1. Select a given clause g from U to process and add to the processed set P.
  2. Generate clauses by performing all inferences between g and clauses in P.
  3. Simplify the clauses, remove redundancies, and check for the empty clause. 
  4. Evaluate the simplified generated clauses and add them to U. 

E’s Given Clause Loop  



E’s Given Clause Loop  



● Given clauses are selected via Clause Evaluation Functions (CEFs).

○ CEFs consist of priority and parameterized weight functions.

○ Clauses are inserted into a priority queue based on (priority, weight) pairs.

● A strategy is a combination of CEFs following a weighted round-robbin scheme.

● For example, 

○ PreferGoals selects all goal (negated conjecture) clauses first.

○ FIFOWeight assigns increasing weights for a first-in, first-out strategy.

○ Clauseweight counts the symbols in a clause to prefer lighter clauses.

○ These make up a classic strategy:

E Strategies  



• The Mizar Mathematical Library (MML) is one of the largest repositories 
of formal mathematics.  

• The Mizar language uses classical first-order logic and the MML is built 
on top of Tarski-Grothendieck set theory.  

• The MML contains over 1000 articles on diverse mathematical topics.
• Our benchmark consists of 57,880 problems exported into first-order 

logic by the MPTP system.
• Most of the research I’ve done done is on this benchmark. 
• You can find some interesting proofs on github: 

https://github.com/ai4reason/ATP_Proofs 

Datasets: Mizar Mathematical Library  

https://github.com/ai4reason/ATP_Proofs


Datasets: Mizar Mathematical Library  

● For a [...] finite sequence p, Sum p = Sum (Reverse p). 
● Proven with the aid of a GNN (Graph Neural Network) in 5 seconds. 



Datasets: Mizar Mathematical Library  

● The closure of rationals on (a,b) is [a,b]. 



Datasets: Mizar Mathematical Library  

● The closure of rationals on (a,b) is [a,b]. 
● Proven with 3 AI models: the GNN and decision trees in two roles in 234 second. 



• Isabelle/HOL is one of the largest proof assistants that uses a simple type 
theory-based higher-order logic (HOL).

• The Sledgehammer system exports goals to the TPTP language for ATPs 
and reconstructs the proofs in Isabelle.

• Our dataset consisted of:
⚬ 1902 theory files
⚬ 276,363 problems
⚬ 179 Isabelle/Mirabelle sessions

￭ 80 from the AFP (Archive of Formal Proofs)
￭ 75 from Isabelle 2021-1
￭ 24 from IsaFoR (Isabelle Formalization of Rewriting)

●  See Yutaka’s talk for more info. 

Datasets: Isabelle Sledgehammer Problems  



Learning in Theorem Proving  

1. High-level:  
a. Premise selection of lemmas from a mathematical library. 
b. Select/evolve strategies (for specific problems/domains). 
c. Find hints for a problem to guide ATPs. 
d. Develop proof sketches (possibly from related theories). 
e. Feedback loops learning over low & mid-level tasks. 
f. Autoformalization: translate natural language (latex) to logic. 

2. Mid-level: 
a. Invent intermediate lemmas, concepts, or models for a problem. 
b. Guide the application of tactics in an Interactive Theorem 

Proving system (ITP) 
c. Learn new tactics (like program-synthesis). 

3. Low-level: 
a. Guide every inference step (-- what I’ll mainly talk about –). 

 





• A symbolic guidance method invented by Veroff.
• Each proof by contradiction has the same goal: the empty clause {}.
• Maintain a list of lemmas, often from proofs of related theorems.

⚬ This is called the watchlist or hint list.
• A generated clause matches a hint if it subsumes the hint.
• Prioritize clauses that match hints for selection. 

 

The Watchlist Technique  

https://www.cs.unm.edu/~mccune/prover9/manual/2009-11A/hints.html


ENIGMA Features  

• To work with many AI techniques, we need vectorial features. 
⚬ Even for the k-NN based hint list selection. 

 
● ENIGMA features aim to capture syntactic structure as a multi-set of features. 

○ Represent clauses as feature vectors derived from term trees. 
○ Vertical features are top-down term walks of length 3. 



ENIGMA Features  

• Vertical feature example: the clause vector consists of feature counts.



ENIGMA Features  

• Aim to capture syntactic structure as a multi-set of features. 
⚬ Represent clauses as feature vectors derived from term trees. 

 
• Some optional features:  

⚬ Horizontal features include the term and top-level argument symbols. 
⚬ Anonymization of function and predicate symbol names by only using their arity. 
⚬ Hash features to reduce dimensionality. 
⚬ Features from the conjecture clauses and parent clauses. 



Core ideas:
• Extend Veroff’s watchlist technique.

⚬ Maintain a list of proofs on the watchlist.
⚬ Track the completion ratio for each proof, based on how much it’s matched.
⚬ Dynamically assign higher priority to clauses matching more complete proofs.

 

ProofWatch  



Core ideas:
• Extend Veroff’s watchlist technique.

⚬ Maintain a list of proofs on the watchlist.
⚬ Track the completion ratio for each proof, based on how much it’s matched.
⚬ Dynamically assign higher priority to clauses matching more complete proofs.

• This proof vector aims to capture the semantic space of the proof search.
• Use k-nearest neighbors to recommend proofs to add to the watchlist.
• Resembles episodic memory.
• Achieved 26% improvement on MML (the Mizar Mathematical Library)

 

ProofWatch  



A snapshot of the successfully useful proof-vector for YELLOW 5:36 
(De Morgan’s laws) with 32 k-NN recommended proofs of related problems:

Proof Vector  

Proof Number Completion Ratio

http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/yellow_5.html


A snapshot of the successfully useful proof-vector for YELLOW 5:36 
(De Morgan’s laws) with 32 k-NN recommended proofs of related problems:

Proof Vector  

http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/yellow_5.html


ProofWatch Results  

• The best results were obtained with the dynamic watchlist 
feature with 16 k-NN recommended proofs.

• The results are on a benchmark of 57897 Mizar problems.



ProofWatch Results  

🌟 The ATP field still has low-hanging fruit if the topic excites you! 🌟 

• The results are on a benchmark of 57897 Mizar problems.





• A statistical learning method typically used for binary classification.   
• In contrast to the symbolic methods, it needs features (as vectors). 
• Decision nodes are added to trees in order to maximally discriminate between 

positive and negative examples in the training data set. 
• Each new tree in the ensemble is trained based on the performance (‘gradient’) of 

the previous trees. 
• Libraries used: 

⚬ XGBoost 
⚬ LightGBM 

Gradient Boosted Decision Trees  

https://github.com/dmlc/xgboost
https://lightgbm.readthedocs.io/en/stable/


Gradient Boosted Decision Tree  



Gradient Boosted Decision Tree  



• A statistical learning method typically used for binary classification.   
• In contrast to the symbolic methods, it needs features (as vectors). 
• Decision nodes are added to trees in order to maximally discriminate between 

positive and negative examples in the training data set. 
• Each new tree in the ensemble is trained based on the performance (‘gradient’) of 

the previous trees. 
• Libraries used: 

⚬ XGBoost: grows full trees level-by-level. 
⚬ LightGBM: grows trees one leaf at a time (so they may be imbalance). 

● We’ve found LightGBM to deliver faster training with good performance. 

Gradient Boosted Decision Trees  

https://github.com/dmlc/xgboost
https://lightgbm.readthedocs.io/en/stable/


● Directed hypergraph for a set of clauses 
● Anonymized symbol names:  

○ The network only captures the mathematical structure. 
● Nodes: clauses, functions and predicate symbols, unique (sub)terms, and literals.  
● Hyperedges: 

1. Clauses and literals 
2. Functions and predicates with subterms 

 

Graph Neural Network  



● Argument ordering is (partially) preserved: 

Graph Neural Network  



● Message passing rounds follow formula structure: 
→ Node ‘embeddings’ are updated via edges from one layer to the next. 
 → Gives us clause embeddings and a prediction layer. 

 

Graph Neural Network  



ENIGMA: Training Loop  

1. Run E over a training dataset.
2. Harvest training samples from the proofs:

⚬ positive = proof clauses
⚬ negative = other (processed) clauses

3. Train a classification model.
4. Plug the model into E and go to 1.



ENIGMA: Given Clause Loop  

• The ENIGMA model is usually used 
in parallel with standard heuristics 
(in a cooperative way).

 



ENIGMA + ENIGMAWatch  

Core ideas:
• ENIGMA:

⚬ Train predictive models based on completed proof searches.
⚬ Use gradient-boosted decision tree libraries. 

● Or the GNN. 
⚬ Combines with E’s native search strategies.

• ENIGMAWatch:
⚬ Use the ProofWatch proof vector as additional input to ENIGMA.
⚬ While using the watchlist guidance.
⚬ Explored various methods of creating proof vectors.



ENIGMAWatch Results  



ENIGMAWatch Results  



Core questions: 
• Can ENIGMA learn to guide E without symmetry breaking methods or 

good search strategies?
⚬ Nearly disable term ordering (and thus some term rewriting rules).
⚬ Restrict literal orderings, used for literal selection.
⚬ Use only a very simple strategy, E0:

Make E Smart Again  



Make E Smart Again - Results  

• Incrementally increasing 
the depth of trees in the 
ENIGMA models 
outperformed looping with a 
constant tree depth.

 



Make E Smart Again - Results  

• E0 is the baseline simple 
strategy.

• E1 and E2 are two strong E 
strategies that use the KBO 
term-ordering with good 
literal selection strategies.

• Experiment #5 surpasses 
E1 after 11 loops of training 
and its first loop is boosted 
with data from an ENIGMA 
model in coop with E1.

 



Parental Guidance  

Core ideas:
• The features of a clause’s parents 

may help in evaluating a clause.
• Filtering clauses immediately 

post-generation may save resources.
• A pre-filter before the other strategies 

may be a good component of a 
multi-model system.

 
 



Parental Guidance Results  

• Results on a small training set of 5792 problems and development and holdout sets of 2896 
problems each.  Models are run for 30 seconds.

• Parental Guidance (PG) run in combination with the best gradient-boosted decision tree (GBDT) 
model attains 11.7% higher performance.

• 3-phase ENIGMA adds a GNN for clause selection to PG and GDBT, attaining the best 
performance.

• E’s auto-schedule proved 1020 problems on holdout, making for a 60% improvement.



The Isabelle ENIGMA  

Core question: 
• Does ENIGMA transfer from the Mizar Mathematical Library to other 

formal math libraries?
 

• The dataset’s 276,363 problems are split into 
⚬ 248k training problems
⚬ 13.8k problems for devel and holdout sets

• We used a symbol-anonymous graph neural network for premise 
selection.

 



The Isabelle ENIGMA Results  



The Isabelle ENIGMA Results  



CVC5 ENIGMA  

● I hear ENIGMA is being ported to CVC5 now with good success. 
● See First Experiments with Neural cvc5 if curious. 

http://grid01.ciirc.cvut.cz/~mptp/cvc5-gnn.pdf


The Tactician 

● The Tactician is an interactive tactic learner for Coq. 
● Coq is an Interactive Theorem Proving (ITP) system that works with the calculus 

of constructions, higher-order type theory. 
○ It’s implemented in OCaml. 

● Tactics are programmatic commands that change the proof state (toward a proof). 
● The Tactician learns from previously written tactic scripts in the Coq library or in 

the current file! 
● Its best learners are: k-NN and Graph2Tac. 

https://coq-tactician.github.io/


Graph2Tac 



The Tactician: Demo 
● There’s a demo at: https://coq-tactician.github.io/demo.html. 

https://coq-tactician.github.io/demo.html


QSynt: Program Synthesis for Integer Sequences 



QSynt: Program Synthesis for Integer Sequences 



QSynt: Program Synthesis for Integer Sequences 

● QSynt uses LLMs, Tree Neural Networks, and Monte Carlo Tree Search. 
● It’s been looping for over a year without plateauing!  
● 123k OEIS sequences (out of 350k) solved so far (600 iterations). 

 
● You can try it here with your favorite sequences: 

http://grid01.ciirc.cvut.cz/~thibault/qsynt.html 

http://grid01.ciirc.cvut.cz/~thibault/qsynt.html


● Thank you :) 
 
● If you’d like more,  

○ My (former) PhD supervisor, Josef Urban, has recent slides introducing AITP: 
http://grid01.ciirc.cvut.cz/~mptp/sri24.pdf 

○ I have research blog posts on my website that should be easier to digest 
than the papers: https://gardenofminds.art/research  

http://grid01.ciirc.cvut.cz/~mptp/sri24.pdf
https://gardenofminds.art/research

