
Short-Term Scientific Mission Grant
- APPLICATION FORM1 -

Action number: CA20111
Applicant name: Luca Ciccone

Details of the STSM

Title: Mechanized Type Inference in the Linear π-Calculus

Start and end date: 22/05/2022 to 29/05/20222

Travel cost: ~400e

Accommodation cost: ~650e

Living cost: ~150e

Requested grant: 1200e

Goals of the STSM

The linear π-calculus is a core language of communicating processes in which (some)
channels can be used for one-shot communications. The ability to create messages that
contain channels makes it possible to encode structured communication protocols that
can be arbitrarily long and may include branching points [1]. Since the complexity of
protocols is reflected in the structure of types, the ability of inferring the type of (linear)
channels from the structure of the processes that use them is of paramount importance.
This STSM addresses the problem of mechanizing a type inference algorithm for the linear
π-calculus. This problem has been partly addressed in previous works [2], although the
existing algorithm is not entirely satisfactory for several reasons: (1) no mechanization of
the algorithm and of its properties are available; (2) the algorithm can only analyze closed
systems in which all the components of a system are fully specified; (3) the algorithm is
based on a type system that does not guarantee deadlock and lock freedom. We aim to
provide an Agda mechanization of a compositional type inference algorithm for the linear
π-calculus based on a co-contextual type system that ensures deadlock and lock freedom
for possibly recursive linear pi-calculus processes.

Working Plan
To tame the complexity of the mechanization, the work plan is structured in four
subsequent phases so that each phase builds on the previous ones and focuses on a
specific feature of the inference algorithm.
Compositional type inference
The first phase will be the identification of an appropriate formulation of the linear pi-
calculus that is amenable to be mechanized and for which it is possible to define a
compositional type inference algorithm based on a co-contextual type system. In
traditional co-contextual type systems, type constraints are accumulated and solved when

1 This form is part of the application for a grant to visit a host organisation located in a different country than
the country of affiliation. It is submitted to the COST Action MC via-e-COST. The Grant Awarding Coordinator
coordinates the evaluation on behalf of the Action MC and informs the Grant Holder of the result of the
evaluation for issuing the Grant Letter.

COST Association AISBL
Avenue du Boulevard – Bolwerklaan 21 | 1210 Brussels, Belgium
T +32 (0)2 533 3800 | office@cost.eu | www.cost.eu

 2

the whole program has been taken into account. The challenge is to be able to localize the
solution of type constraints so that independent system components can be analyzed in
isolation.
Support for recursive processes and types
Many communication protocols describe arbitrarily long conversations. The encoding of
such protocols in the linear pi-calculus requires support for recursive types. In this phase
we will extend the process language to include recursive processes, we will identify a
suitable Agda representation of recursive (possibly infinite) types and will extend the
inference algorithm accordingly. While it makes sense to find a finite representation for
recursive processes, it is likely the case that the most convenient Agda representation of
infinite types is based on coinductive data types. In this way, we can reuse much of the
constraint resolution part of the inference algorithm defined in the previous phase.
Type inference with subtyping
Subtyping for session types has been shown to be important for broadening the range of
processes that are well typed [4]. Previous works have shown that subtyping for session
types is the relation induced by subtyping for channel types [1]. In this phase we will
enrich the inference algorithm with support for subtyping. This will require a
generalization in the representation of type constraints from equalities to subtyping
relations and a corresponding modification of the constraint resolution algorithm with a
type merging operator so that the type inference algorithm yields the most precise type of
the channels used by a process.
Type inference with fair subtyping
The standard subtyping relation for session types [4] preserves safety properties (such as
deadlock freedom) but not liveness properties (such as lock freedom). In this phase we will
study a characterization of fair subtyping for types of the linear pi-calculus that preserves
liveness properties. Existing characterizations of fair subtyping for session types are quite
complex to define and particularly to mechanize [3]. We will investigate the origins of the
complexity of the existing mechanization and whether it originates from theoretical design
choices or from unsuitable choice of Agda elements for its mechanization. We will check
the correctness of the new characterization in terms of soundness and completeness with
respect to a reference semantic definition. Finally, we will adapt the constraint solving
part of the inference algorithm so that it solves subtyping constraints using fair subtyping.

Expected outputs and contribution to the Action MoU objectives and deliverables.

Working Group: WG3 – Program Verification

At the end of the mission, we expect to obtain an Agda mechanization of a type inference
algorithm for the linear pi calculus that is compositional (allowing for the analysis of
independent processes in isolation) and that supports recursive types. We will also pave
the way to the integration of subtyping in the inference algorithm and we expect to define
a new characterization of fair subtyping that is easier to mechanize compared to previous
ones. Overall, these efforts will contribute to the promotion of “the output of detailed,
checkable proofs from automated theorem provers” in the specific context of
communication-oriented program verification. We also expect that all the attempts in
finding the right mechanization of the type inference algorithm will serve as a strong basis
for the community concerning future related works. Hopefully, all such notions will be
reusable into other proof assistants.

The STSM will also be the occasion to foster the collaboration between two different
research groups that so far have only interacted indirectly with one another. Indeed,
Ornela Dardha has been organizing the first two editions of the VErification of Session

 3

Types (VEST) workshop. The workshop aims at gathering people from two different
research communities, that working on session types and that working on proof
assistants. The recent increase of interest in these tools highlighted the lack of a
reference modus operandi on which all the community can agree. The same proof
assistants are constantly being updated which means that sometimes existing
mechanizations do not work anymore due to inconsistencies that are discovered at the
tool level. However, both editions of the workshop have only been held online because of
the spread of the COVID pandemic. In the meantime, our research groups have been
making progress on related and partially overlapping topics [5,6] on the formalization of
session-based calculi. In the end, I never had a chance to work personally and closely with
people other than my own supervisor on topics related to my research interests. So, the
STSM is in line with the capacity building objectives of EuroProofNet, by bringing “together
members of the different communities working on proofs in Europe” and by “actively
supporting young researchers”. We expect that the collaboration between the involved
research groups will continue even after the mission has ended by inspecting novel
research topics such as type inference involving coinductive types, mechanization of a
type system using the properties that we studied and so forth.

References
1. Ornela Dardha, Elena Giachino, Davide Sangiorgi: Session types revisited. Inf.

Comput. 256: 253-286 (2017)
2. Luca Padovani: Type Reconstruction for the Linear π-Calculus with Composite

Regular Types. Log. Methods Comput. Sci. 11(4) (2015)
3. Luca Ciccone, Luca Padovani: Inference Systems with Corules for Fair Subtyping

and Liveness Properties of Binary Session Types. ICALP 2021: 125:1-125:16
4. Simon J. Gay, Malcolm Hole: Subtyping for session types in the pi calculus. Acta

Informatica 42(2-3): 191-225 (2005)
5. Uma Zalakain, Ornela Dardha: π with Leftovers: A Mechanisation in Agda.

FORTE 2021: 157-174
6. Luca Ciccone, Luca Padovani: A Dependently Typed Linear π-Calculus in Agda.

PPDP 2020: 8:1-8:14

	References

