
Towards Behavioural Types as Coalgebras

Henning Basold — Joint work with Alex Keizer and Jorge A. Pérez

EuroProofNet WG6 Kick-Off Meeting, Stockholm

2022 May 21



Introduction

Goal

Framework for typing channel-based concurrency

• Coalgebras model communication protocols as channel behaviour

• Functor determines observable channel behaviour

• Type of a channel x used by process p is a state T in a coalgebra

x : T ⊢ p

• Coinductive predicates for subtyping, duality etc.

• Type system and syntax from finitely generated coalgebras (c.f., regular expressions)

Type syntax Finite coalgebras

Rational fixed point

• Semantics via coalgebraic techniques (final coalgebras, traces)



Protocol View of Mathematical Server

q0

&
q6

end

q1

?
q2

?
q3

!

q4

?
q5

!

quit

mu
l

neg

int int

int

bool

bool



A Client Protocol for Mathematical Server

s0

⊕
s6

end

s1

!
s2

!
s3

?

s4

!
s5

?

quit

mu
l

neg

int int

int

bool

bool



Subtyping: Another Client Protocol for

Mathematical Server

r0
⊕

r1
!mul r2

!int r3
?int r4

⊕real r5
endquit



Session delegation and session coalgebras

q0

&
q1

?
q2

?
q3

!

q
int

mul

.

.

.



A Session Type System (Vasconcelos)

p ::= ?T . T
| !T . T
| &{li : Ti}i∈I
| ⊕{li : Ti}i∈I

q ::= lin | un

T ::= d ∈ D
| end
| q p.T
| X ∈ Var

| µX .T

• D – set of basic data types (int etc.)

• I – finite sets of labels

Mathematical server:

µX . &


mul : ?int. ?int. !int. X
neg : ?bool. !bool. X
quit : end



Session Coalgebra Functor

• Operations: O = {com, branch, end, bsc, par}
• Polarities: P = {in, out}
• Outputs A and branching B

A = {com} × P Bcom,p = {∗, d}
∪ {branch} × P × P+

ω (L) Bbranch,p,L = L
∪ {end} Bend = ∅
∪ {bsc} × D Bbsc,d = ∅
∪ {par} Bpar = 1

F : Set → Set F (X) =
∐
a∈A

XBa



Session Types form Session Coalgebra

Session Coalgebra: Coalgebra for polynomial functor

c : X → FX

Syntactic Session Coalgebra

We can give a coalgebra

cType : Type → F (Type)

and then derive subtyping, type checking etc. as special cases for this coalgebra.



Subtyping in Session Coalgebras

Subtyping is a coinductive relation induced by h⊑ : RelX → RelF (X)

h⊑(R) = { ((com, in, f ), (com, in, g)) | f (∗) R g(∗) and f (d) R g(d) }
∪ { ((com, out, f ), (com, out, g)) | f (∗) R g(∗) and g(d) R f (d) }
∪ { ((bsc, d, f∅), (bsc, d ′, f∅)) | d ≤D d ′ }
∪ { ((end, f∅), (end, f∅)) }

.

.

.



Subtyping Example

s2

!
s3

?
s0

⊕

qint
int

qreal
real

r2
!

r3
?

r4
⊕

· · ·

· · ·

· · ·

· · ·

⊒

⊑

⊑

⊑



Decidability

Definition

For any state x of a coalgebra (X , c), the generated coalgebra ⟨x⟩ is the smallest subset of

X which includes x and is closed under transitions.

Definition

A coalgebra (X , c) is finitely generated if ⟨x⟩ is finite for all x ∈ X .

Lemma

The coalgebra of types (Type, cType) is a finitely generated coalgebra.

Theorem

Equivalence, duality and subtying are decidable for finitely generated session coalgebras.



Type System for the π-Calculus

c(T ) = (?, f ) Γ, y : U, x : f (∗) ⊢ P f (d) ⊑ U
Γ, x : T ⊢ x(y).P

[T-In]

c(T ) = (!, f ) Γ, x : f (∗) ⊢ P U ⊑ f (d)
Γ, x : T , y : U ⊢ x⟨y⟩.P [T-Out]

Γ1 ⊢ P Γ2 ⊢ Q
Γ1 ◦ Γ2 ⊢ P | Q [T-Rep]

.

.

.



Other Cool Things

• Definition of duality straightforward – was wrong for a while on syntax

• Syntax via rational fixed point (analogous to regular expressions), well almost

• Context-free session types (sequential composition) via coalgebras for functor G

Ca =

{
{d}, a = (com, p)

Ba, otherwise

G(X) =

(∐
a∈A

XCa

)
× X∗

that adds a stack

• Functorial trace semantics and determinisation (remove stack)

• Paper: “Session Coalgebras: A Coalgebraic View on Session Types and

Communication Protocols”, To appear in TOPLAS or on my website



Future

• Generalise framework to other protocol presentations: typestates, mailbox types,

other behavioural types, interface automata, Reo, etc.

• Example: Using presheaves instead of Set as base category for access permissions

• Example: Dependent types via fibrations

• Prove subject reduction etc. in general

• Investigate global properties like deadlocks

• Two levels of coalgebras:

(1) Types/protocols of channels

(2) Processes that use typed channels

• Coalgebraic approach to linear logic


