#### Towards Behavioural Types as Coalgebras

#### Henning Basold - Joint work with Alex Keizer and Jorge A. Pérez

EuroProofNet WG6 Kick-Off Meeting, Stockholm

2022 May 21

### Introduction

#### Goal

Framework for typing channel-based concurrency

- Coalgebras model communication protocols as channel behaviour
- Functor determines observable channel behaviour
- Type of a channel *x* used by process *p* is a *state T* in a coalgebra

$$x: T \vdash p$$

- Coinductive predicates for subtyping, duality etc.
- Type system and syntax from finitely generated coalgebras (c.f., regular expressions)



• Semantics via coalgebraic techniques (final coalgebras, traces)

#### Protocol View of Mathematical Server



#### A Client Protocol for Mathematical Server



# Subtyping: Another Client Protocol for Mathematical Server



#### Session delegation and session coalgebras



### A Session Type System (Vasconcelos)

$$p ::= ?T. T T ::= d \in D | !T. T | end | & & {l_i : T_i}_{i \in I} | q p.T | & \oplus {l_i : T_i}_{i \in I} | X \in Var | & \mu X.T$$

$$q$$
 ::= lin | un

- *D* set of basic data types (int etc.)
- *I* finite sets of labels

Mathematical server:

$$\mu X. \& \begin{cases} mul: ?int.?int.!int. X\\ neg: ?bool.!bool. X\\ quit: end \end{cases}$$

#### Session Coalgebra Functor

- Operations:  $O = \{ com, branch, end, bsc, par \}$
- Polarities:  $P = \{in, out\}$
- Outputs A and branching B

$$A = \{ \operatorname{com} \} \times P \qquad B_{\operatorname{com},p} = \{ *, d \}$$
$$\cup \{ \operatorname{branch} \} \times P \times \mathcal{P}_{\omega}^{+}(\mathbb{L}) \qquad B_{\operatorname{branch},p,L} = L$$
$$\cup \{ \operatorname{end} \} \qquad B_{\operatorname{end}} = \emptyset$$
$$\cup \{ \operatorname{bsc} \} \times D \qquad B_{\operatorname{bsc},d} = \emptyset$$
$$\cup \{ \operatorname{par} \} \qquad B_{\operatorname{par}} = \mathbb{1}$$

| $F: \mathbf{Set} \to \mathbf{Set}$ | $F(X) = \prod_{i=1}^{n}$ | $X^{B_a}$ |
|------------------------------------|--------------------------|-----------|
|                                    | a∈A                      |           |

### Session Types form Session Coalgebra

Session Coalgebra: Coalgebra for polynomial functor

 $c \colon X \to FX$ 

Syntactic Session Coalgebra

We can give a coalgebra

 $c_{\text{Type}}$ : Type  $\rightarrow$  F(Type)

and then derive subtyping, type checking etc. as special cases for this coalgebra.

### Subtyping in Session Coalgebras

Subtyping is a coinductive relation induced by  $h_{\sqsubseteq}$ :  $\operatorname{Rel}_X \to \operatorname{Rel}_{F(X)}$ 

 $h_{\Box}(R) = \{ ((\operatorname{com}, in, f), (\operatorname{com}, in, g)) | f(*) R g(*) \text{ and } f(d) R g(d) \}$   $\cup \{ ((\operatorname{com}, out, f), (\operatorname{com}, out, g)) | f(*) R g(*) \text{ and } g(d) R f(d) \}$   $\cup \{ ((\operatorname{bsc}, d, f_{\emptyset}), (\operatorname{bsc}, d', f_{\emptyset})) | d \leq_{D} d' \}$  $\cup \{ ((\operatorname{end}, f_{\emptyset}), (\operatorname{end}, f_{\emptyset})) \}$ 

## Subtyping Example



# Decidability

#### Definition

For any state x of a coalgebra (X, c), the generated coalgebra  $\langle x \rangle$  is the smallest subset of X which includes x and is closed under transitions.

#### Definition

A coalgebra (X, c) is *finitely generated* if  $\langle x \rangle$  is finite for all  $x \in X$ .

#### Lemma

The coalgebra of types (Type,  $c_{Type}$ ) is a finitely generated coalgebra.

#### Theorem

Equivalence, duality and subtying are decidable for finitely generated session coalgebras.

#### Type System for the $\pi$ -Calculus

$$\frac{c(T) = (?, f) \qquad \Gamma, \ y : U, \ x : f(*) \vdash P \qquad f(d) \sqsubseteq U}{\Gamma, x : T \vdash x(y).P}$$
[T-IN]

$$\frac{c(T) = (!, f) \quad \Gamma, \ x : f(*) \vdash P \quad U \sqsubseteq f(d)}{\Gamma, x : T, y : U \vdash \overline{x} \langle y \rangle. P}$$
[T-OUT]

$$\frac{\Gamma_1 \vdash P \quad \Gamma_2 \vdash Q}{\Gamma_1 \circ \Gamma_2 \vdash P \mid Q}$$
[T-Rep]

:

# Other Cool Things

- Definition of duality straightforward was wrong for a while on syntax
- Syntax via rational fixed point (analogous to regular expressions), well almost
- Context-free session types (sequential composition) via coalgebras for functor G

$$C_a = \begin{cases} \{d\}, & a = (\text{com}, p) \\ B_a, & \text{otherwise} \end{cases} \qquad G(X) = \left(\coprod_{a \in A} X^{C_a}\right) \times X^*$$

that adds a stack

- Functorial trace semantics and determinisation (remove stack)
- Paper: "Session Coalgebras: A Coalgebraic View on Session Types and Communication Protocols", To appear in TOPLAS or on my website

#### Future

- Generalise framework to other protocol presentations: typestates, mailbox types, other behavioural types, interface automata, Reo, etc.
- Example: Using presheaves instead of **Set** as base category for access permissions
- Example: Dependent types via fibrations
- Prove subject reduction etc. in general
- Investigate global properties like deadlocks
- Two levels of coalgebras:
  - (1) Types/protocols of channels
  - (2) Processes that use typed channels
- Coalgebraic approach to linear logic