
B-systems and C-systems are equivalent

Jacopo Emmenegger
Università degli Studi di Genova

joint work with Benedikt Ahrens, Paige Randall North
and Egbert Rijke

Workshop on Syntax and Semantics of Type Theory
Stockholms universitet

20–21 May 2022



C-systems (a.k.a. contextual categories1)
A category C with a terminal object 1 together with structure such
that:
1. the objects of C can be arranged into a rooted tree R(C) (with

root 1) that embeds into C, and
2. every cospan in C can be completed to a pullback if one of the

arrows, say p, is coming from R(C). This choice is functorial in
the other arrow, and such that the chosen pullback of p is also
coming from R(C).

Think of:
1. The category of contexts of a dependent type theory. Here

display maps (Γ, x : A)→ Γ are functorially stable under
pullback.

2. A category with display maps à la Taylor (C,D), where the
class of display maps D form a rooted tree and its stability
under pullback is functorial. N.B. D is not required to be
closed under composition.

1Cartmell. Generalised algebraic theories and contextual categories. 1986.
1



C-systems (a.k.a. contextual categories1)
A category C with a terminal object 1 together with structure such
that:
1. the objects of C can be arranged into a rooted tree R(C) (with

root 1) that embeds into C, and
2. every cospan in C can be completed to a pullback if one of the

arrows, say p, is coming from R(C). This choice is functorial in
the other arrow, and such that the chosen pullback of p is also
coming from R(C).

Think of:
1. The category of contexts of a dependent type theory. Here

display maps (Γ, x : A)→ Γ are functorially stable under
pullback.

2. A category with display maps à la Taylor (C,D), where the
class of display maps D form a rooted tree and its stability
under pullback is functorial. N.B. D is not required to be
closed under composition.

1Cartmell. Generalised algebraic theories and contextual categories. 1986.
1



B-systems2
A B-frame B:

B̃1 B̃2 B̃3

{∗} ∼= B0 B1 B2 B3

∂ ∂ ∂

. . .

ft ft ft . . .

think of:
A ∈ Bn+1 as v1 : ftn(A), . . . , vn : ft(A) ` A type

a ∈ B̃n+1 as v1 : ftn(A), . . . , vn : ft(A) ` a : A, where A := ∂(a)

together with, for x ∈ B̃n+1, X ∈ Bn, homomorphisms of B-frames

B/∂(x) B/ft∂(x) B/ft(X ) B/XSx WX

and a function δn : Bn+1 → B̃n+2 for every n.
Plus a number of equations.

2Voevodsky. B-systems. 2014
2



B-systems2
A B-frame B:

B̃1 B̃2 B̃3

{∗} ∼= B0 B1 B2 B3

∂ ∂ ∂

. . .

ft ft ft . . .

think of:
A ∈ Bn+1 as v1 : ftn(A), . . . , vn : ft(A) ` A type

a ∈ B̃n+1 as v1 : ftn(A), . . . , vn : ft(A) ` a : A, where A := ∂(a)

together with, for x ∈ B̃n+1, X ∈ Bn, homomorphisms of B-frames

B/∂(x) B/ft∂(x) B/ft(X ) B/XSx WX

and a function δn : Bn+1 → B̃n+2 for every n.
Plus a number of equations.

2Voevodsky. B-systems. 2014
2



B-systems2
A B-frame B:

B̃1 B̃2 B̃3

{∗} ∼= B0 B1 B2 B3

∂ ∂ ∂

. . .

ft ft ft . . .

think of:
A ∈ Bn+1 as v1 : ftn(A), . . . , vn : ft(A) ` A type

a ∈ B̃n+1 as v1 : ftn(A), . . . , vn : ft(A) ` a : A, where A := ∂(a)

together with, for x ∈ B̃n+1, X ∈ Bn, homomorphisms of B-frames

B/∂(x) B/ft∂(x) B/ft(X ) B/XSx WX

and a function δn : Bn+1 → B̃n+2 for every n.
Plus a number of equations.
2Voevodsky. B-systems. 2014

2



Why B-systems?

In order to construct the initial model for a dependent type theory à
la Martin-Löf:
1. From a suitable signature construct a monad of preterms

R : Set→ Set and a left module of pretypes LM : Set→ Set
over R.3

2. Construct a C-system C(R, LM) of preterms and pretypes.2

3. Use subsystems and quotients of C-systems4 to carve out
well-formed types and well-typed terms modulo a convertibility
relation.

It resembles usual presentations of Martin-Löf type theory, but:
I it is done for an arbitrary signature,
I it directly produces a C-system.

3Voevodsky. C-system of a module over a Jf -relative monad. 2016.
4Voevodsky. Subsystems and regular quotients of C-systems. 2016.

3



Why B-systems?

In order to construct the initial model for a dependent type theory à
la Martin-Löf:
1. From a suitable signature construct a monad of preterms

R : Set→ Set and a left module of pretypes LM : Set→ Set
over R.3

2. Construct a C-system C(R, LM) of preterms and pretypes.2

3. Use subsystems and quotients of C-systems4 to carve out
well-formed types and well-typed terms modulo a convertibility
relation.

It resembles usual presentations of Martin-Löf type theory, but:
I it is done for an arbitrary signature,
I it directly produces a C-system.

3Voevodsky. C-system of a module over a Jf -relative monad. 2016.
4Voevodsky. Subsystems and regular quotients of C-systems. 2016.

3



Why B-systems?

To address step 3 (carving out well-formed types and terms) need to
develop a theory of subsystems and quotients of C-systems.
Use B-systems for this: there is a bijection5 between
I subsystems of a C-system C, and
I subsystems of a certain B-system B(C), i.e. subsets of the Bn’s

and B̃n+1’s closed under substitution, weakening and generic
elements.

and similarly for quotients.
B-systems are algebras for a monad on a category of presheaves.6

Theorem (Ahrens–E.–North–Rijke)
The categories of B-systems and C-systems are equivalent.

5Voevodsky. Subsystems and regular quotients of C-systems. 2016.
6Garner. Combinatorial structure of type dependency. 2014.

4



Why B-systems?

To address step 3 (carving out well-formed types and terms) need to
develop a theory of subsystems and quotients of C-systems.
Use B-systems for this: there is a bijection5 between
I subsystems of a C-system C, and
I subsystems of a certain B-system B(C), i.e. subsets of the Bn’s

and B̃n+1’s closed under substitution, weakening and generic
elements.

and similarly for quotients.
B-systems are algebras for a monad on a category of presheaves.6

Conjecture (Voevodsky)
The categories of B-systems and C-systems are equivalent.

5Voevodsky. Subsystems and regular quotients of C-systems. 2016.
6Garner. Combinatorial structure of type dependency. 2014.

4



Why B-systems?

To address step 3 (carving out well-formed types and terms) need to
develop a theory of subsystems and quotients of C-systems.
Use B-systems for this: there is a bijection5 between
I subsystems of a C-system C, and
I subsystems of a certain B-system B(C), i.e. subsets of the Bn’s

and B̃n+1’s closed under substitution, weakening and generic
elements.

and similarly for quotients.
B-systems are algebras for a monad on a category of presheaves.6

Theorem (Ahrens–E.–North–Rijke)
The categories of B-systems and C-systems are equivalent.

5Voevodsky. Subsystems and regular quotients of C-systems. 2016.
6Garner. Combinatorial structure of type dependency. 2014.

4



B-systems: equations

1. Substitution distributes over substitution and over weakening:

SxSy = SSx (y)Sx SxWX = WSx (X)Sx

where x ∈ B̃n+1 and y ∈ B̃m+n+1 s.t. ftm∂(y) = ∂(x),
and it preserves generic elements

Sxδ = δSx

2. Similarly for weakening.

WX Sy = SWX (y)WX WX WY = WWX (Y )WX WXδn = δn+1WX

3. For x ∈ B̃n+1 and X ∈ Bn+1:

SxW∂(x) = idB/∂(x) Sx (δ∂(x)) = x Sδ(X)(WX/X ) = idB/X

5



B-systems: rooted tree

{∗} B1 B2 B3
ft ft . . .

is a rooted tree T(B) with graph given by:

V :=
∐
n

Bn

(m,X )→ (n,Y ) iff m = n + 1 and Y = ft(X ).

T(B) encodes one-step type dependencies.

6



Overview
The functor Bsys→ Csys will construct the “syntactic category” of
a B-system.
1. Define contexts and context morphisms (i.e. tuples of

well-typed terms).
2. Define composition of context morphisms by means of

substitution.

Esys rCEsys

Bsys
stratified
Esys '

stratified
rCEsys Csys

'

' '

In the top row, replace the rooted tree of single-step type
dependencies with an arbitrary (strict) category of multi-step type
dependencies.

7



Overview
The functor Bsys→ Csys will construct the “syntactic category” of
a B-system.
1. Define contexts and context morphisms (i.e. tuples of

well-typed terms).
2. Define composition of context morphisms by means of

substitution.

Esys rCEsys

Bsys
stratified
Esys '

stratified
rCEsys Csys

'

' '

In the top row, replace the rooted tree of single-step type
dependencies with an arbitrary (strict) category of multi-step type
dependencies.

7



Stratification
A (strict) category with terminal object 1 is stratified if there is a
functor L : C → (N,≥) such that
1. L(X ) = 0 if and only if X is the chosen terminal object 1,
2. for any f : X → Y we have L(X ) = L(Y ) if and only if X = Y

and f = idX , and
3. every morphism f : X → Y in C, where L(X ) = n + m + 1 and

L(Y ) = n, has a unique factorization

X = Xm+1 Xm · · · X1 X0 = Yfm fm−1 f1 f0

where L(Xi+1) = n + i + 1 = L(Xi ) + 1.

Proposition

1. Being stratified is a property.

2. The category of stratified categories is equivalent to the
category of rooted trees via the free category functor.

8



Stratification
A (strict) category with terminal object 1 is stratified if there is a
functor L : C → (N,≥) such that
1. L(X ) = 0 if and only if X is the chosen terminal object 1,
2. for any f : X → Y we have L(X ) = L(Y ) if and only if X = Y

and f = idX , and
3. every morphism f : X → Y in C, where L(X ) = n + m + 1 and

L(Y ) = n, has a unique factorization

X = Xm+1 Xm · · · X1 X0 = Yfm fm−1 f1 f0

where L(Xi+1) = n + i + 1 = L(Xi ) + 1.

Proposition

1. Being stratified is a property.
2. The category of stratified categories is equivalent to the

category of rooted trees via the free category functor.

8



CE-systems
A CE-system consists of
1. two strict category structures F and C on the same set of

objects Ob(F) = Ob(C),
2. an identity-on-objects functor I : F → C between them,
3. a chosen object > which is terminal in F, and
4. for every f : ∆→ Γ in C and any A ∈ F/Γ, a choice of a

pullback square

∆.f ∗A Γ.A

∆ Γ

π2(f ,A)

I(f ∗A) I(A)

f

which is functorial in A and f .

A CE-system is rooted if I(>) = > is terminal in C.

9



Esys rCEsys

Bsys
stratified
Esys '

stratified
rCEsys Csys

'

' '

C-system:
I Functorial choice of pullbacks.
I Rooted tree of type dependency.

CE-system:
I Functorial choice of pullbacks.
I If stratified: rooted tree of type dependency.

10



E-systems
An E-system E consists of a category F with a terminal object []
together with:
1. A term structure: for every A ∈ F/Γ, a set T (A).
2. A substitution structure: for every A ∈ F/Γ and x ∈ T (A), a

functor
Sx : F/Γ.A→ F/Γ

with term structure: for every B ∈ F/Γ.A, a function

T (B)→ T (Sx (B)).

3. A weakening structure: for every A ∈ F/Γ, a functor with term
structure WA : E/Γ→ E/Γ.A.

4. A projection structure: for every A ∈ F/Γ, an element
idtmA ∈ T (WA(A)).

Satisfying equations similar to those of B-systems, plus:
Sx and WA preserve terminal objects, and
WA is functorial in A, i.e. WidΓ = IdE/Γ and WAP = WPWA.

11



From B-systems to E-systems
B a B-system. F is the free category on the (graph of the) rooted
tree T(B) of single-step type dependencies.
Arrows in F are of the form (X , k) : (n + k,X )→ (n, ftk(X )).

The term structure T (X , k) is defined inductively together with
simultaneous substitutions Sk

t of tuples of terms t ∈ T (X , k).
I On arrows of length 0 and 1: for X ∈ Bn

T (X , 0) := {∗} S0
∗ := id : B/X → B/X

T (X , 1) := ∂−1(X ) ⊆ B̃n S1
x := Sx : B/X → B/ft(X )

I For X ∈ Bn and k ≤ n by induction:
suppose that for every m ≤ n and Y ∈ Bm we have T (Y , k)
for k ≤ m and Sk

s : B/Y → B/ftk(Y ) for s ∈ T (Y , k) , then

T (X , k+1) :=
∐

t∈T (ft(X),k)
T (Sk

t (X ), 1) Sk+1
(t,x) := Sx (Sk

t /X )

12



From B-systems to E-systems
B a B-system. F is the free category on the (graph of the) rooted
tree T(B) of single-step type dependencies.
Arrows in F are of the form (X , k) : (n + k,X )→ (n, ftk(X )).
The term structure T (X , k) is defined inductively together with
simultaneous substitutions Sk

t of tuples of terms t ∈ T (X , k).
I On arrows of length 0 and 1: for X ∈ Bn

T (X , 0) := {∗} S0
∗ := id : B/X → B/X

T (X , 1) := ∂−1(X ) ⊆ B̃n S1
x := Sx : B/X → B/ft(X )

I For X ∈ Bn and k ≤ n by induction:
suppose that for every m ≤ n and Y ∈ Bm we have T (Y , k)
for k ≤ m and Sk

s : B/Y → B/ftk(Y ) for s ∈ T (Y , k) , then

T (X , k+1) :=
∐

t∈T (ft(X),k)
T (Sk

t (X ), 1) Sk+1
(t,x) := Sx (Sk

t /X )

12



Esys rCEsys

Bsys
stratified
Esys '

stratified
rCEsys Csys

''

' '

13



Esys rCEsys

Bsys
stratified
Esys '

stratified
rCEsys Csys

''

' '

13



From CE-systems to E-systems
I : F → C a CE-system.
Define an E-system on F as follows:

T (A) := {x : Γ→ Γ.A | I(A)x = idΓ}, for A ∈ F/Γ

WA := A∗ : F/Γ→ F/Γ.A, for A ∈ F/Γ

Sx := x∗ : F/Γ.A→ F/Γ, for x ∈ T (A)

Γ.A

Γ.A.WA(A) Γ.A

Γ.A Γ

idΓ.A

idΓ.A

idtmA

π2(I(A),A)

I(WA(A)) I(A)

I(A)

14



From E-systems to CE-systems
E an E-system.
For A,B ∈ F/Γ, an internal morphism over Γ is an element of

thom(A,B) := T (WA(B))

15



From E-systems to CE-systems
E an E-system.
For A,B ∈ F/Γ, an internal morphism over Γ is an element of

thom(A,B) := T (WA(B))

Note that, given also P ∈ F/Γ.A:

thom(PA,B) = T (WPA(B)) = T (WPWA(B)) = thom(P,WA(B))

Indeed once we have a category of internal morphisms

(−) ◦ A aWA

15



From E-systems to CE-systems
E an E-system.
For A,B ∈ F/Γ, an internal morphism over Γ is an element of

thom(A,B) := T (WA(B))

Given f ∈ thom(A,B), define precomposition by f as

E/Γ.B E/Γ.A

E/Γ.A.WA(B)

f ∗

WA/B Sf

Then if g ∈ thom(B,C), define g ◦ f := f ∗(g).

Identities are given by idtmA ∈ T (WA(A)) = thom(A,A).

Obtain a category CE(Γ) of internal morphisms over Γ.
15



From E-systems to CE-systems
Define IΓ

E : F/Γ→ CE(Γ) as

Γ.A.P Γ.A

WP(idtmA) ∈ thom(PA,A)

Γ
PA

P

A

Proposition
E and E-system. For every Γ,

F/Γ CE(Γ)
IΓ
E

is a rooted CE-system.

The choice of pullbacks is also given algebraically using the
operations of E.

16



Equivalence
Theorem (Ahrens–E.–North–Rijke)

1. The functors Esys� rCEsys give rise to an equivalence of
categories.

2. The equivalence restricts to stratified systems.
3. It follows that Bsys ≡ Csys.

Esys rCEsys

Bsys
stratified
Esys '

stratified
rCEsys Csys

'

' '

Details in:
B-systems and C-systems are equivalent. arXiv:2111.09948

17



Equivalence
Theorem (Ahrens–E.–North–Rijke)

1. The functors Esys� rCEsys give rise to an equivalence of
categories.

2. The equivalence restricts to stratified systems.

3. It follows that Bsys ≡ Csys.

Esys rCEsys

Bsys
stratified
Esys '

stratified
rCEsys Csys

'

' '

Details in:
B-systems and C-systems are equivalent. arXiv:2111.09948

17



Equivalence
Theorem (Ahrens–E.–North–Rijke)

1. The functors Esys� rCEsys give rise to an equivalence of
categories.

2. The equivalence restricts to stratified systems.
3. It follows that Bsys ≡ Csys.

Esys rCEsys

Bsys
stratified
Esys '

stratified
rCEsys Csys

'

' '

Details in:
B-systems and C-systems are equivalent. arXiv:2111.09948

17


