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C-systems (a.k.a. contextual categories1)
A category C with a terminal object 1 together with structure such
that:
1. the objects of C can be arranged into a rooted tree R(C) (with

root 1) that embeds into C, and
2. every cospan in C can be completed to a pullback if one of the

arrows, say p, is coming from R(C). This choice is functorial in
the other arrow, and such that the chosen pullback of p is also
coming from R(C).

Think of:
1. The category of contexts of a dependent type theory. Here

display maps (Γ, x : A)→ Γ are functorially stable under
pullback.

2. A category with display maps à la Taylor (C,D), where the
class of display maps D form a rooted tree and its stability
under pullback is functorial. N.B. D is not required to be
closed under composition.

1Cartmell. Generalised algebraic theories and contextual categories. 1986.
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B-systems2
A B-frame B:

B̃1 B̃2 B̃3

{∗} ∼= B0 B1 B2 B3

∂ ∂ ∂

. . .

ft ft ft . . .

think of:
A ∈ Bn+1 as v1 : ftn(A), . . . , vn : ft(A) ` A type

a ∈ B̃n+1 as v1 : ftn(A), . . . , vn : ft(A) ` a : A, where A := ∂(a)

together with, for x ∈ B̃n+1, X ∈ Bn, homomorphisms of B-frames

B/∂(x) B/ft∂(x) B/ft(X ) B/XSx WX

and a function δn : Bn+1 → B̃n+2 for every n.
Plus a number of equations.

2Voevodsky. B-systems. 2014
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Why B-systems?

In order to construct the initial model for a dependent type theory à
la Martin-Löf:
1. From a suitable signature construct a monad of preterms

R : Set→ Set and a left module of pretypes LM : Set→ Set
over R.3

2. Construct a C-system C(R, LM) of preterms and pretypes.2

3. Use subsystems and quotients of C-systems4 to carve out
well-formed types and well-typed terms modulo a convertibility
relation.

It resembles usual presentations of Martin-Löf type theory, but:
I it is done for an arbitrary signature,
I it directly produces a C-system.

3Voevodsky. C-system of a module over a Jf -relative monad. 2016.
4Voevodsky. Subsystems and regular quotients of C-systems. 2016.
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Why B-systems?

To address step 3 (carving out well-formed types and terms) need to
develop a theory of subsystems and quotients of C-systems.
Use B-systems for this: there is a bijection5 between
I subsystems of a C-system C, and
I subsystems of a certain B-system B(C), i.e. subsets of the Bn’s

and B̃n+1’s closed under substitution, weakening and generic
elements.

and similarly for quotients.
B-systems are algebras for a monad on a category of presheaves.6

Theorem (Ahrens–E.–North–Rijke)
The categories of B-systems and C-systems are equivalent.

5Voevodsky. Subsystems and regular quotients of C-systems. 2016.
6Garner. Combinatorial structure of type dependency. 2014.
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B-systems: equations

1. Substitution distributes over substitution and over weakening:

SxSy = SSx (y)Sx SxWX = WSx (X)Sx

where x ∈ B̃n+1 and y ∈ B̃m+n+1 s.t. ftm∂(y) = ∂(x),
and it preserves generic elements

Sxδ = δSx

2. Similarly for weakening.

WX Sy = SWX (y)WX WX WY = WWX (Y )WX WXδn = δn+1WX

3. For x ∈ B̃n+1 and X ∈ Bn+1:

SxW∂(x) = idB/∂(x) Sx (δ∂(x)) = x Sδ(X)(WX/X ) = idB/X

5



B-systems: rooted tree

{∗} B1 B2 B3
ft ft . . .

is a rooted tree T(B) with graph given by:

V :=
∐
n

Bn

(m,X )→ (n,Y ) iff m = n + 1 and Y = ft(X ).

T(B) encodes one-step type dependencies.

6



Overview
The functor Bsys→ Csys will construct the “syntactic category” of
a B-system.
1. Define contexts and context morphisms (i.e. tuples of

well-typed terms).
2. Define composition of context morphisms by means of

substitution.

Esys rCEsys

Bsys
stratified
Esys '

stratified
rCEsys Csys

'

' '

In the top row, replace the rooted tree of single-step type
dependencies with an arbitrary (strict) category of multi-step type
dependencies.

7
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Stratification
A (strict) category with terminal object 1 is stratified if there is a
functor L : C → (N,≥) such that
1. L(X ) = 0 if and only if X is the chosen terminal object 1,
2. for any f : X → Y we have L(X ) = L(Y ) if and only if X = Y

and f = idX , and
3. every morphism f : X → Y in C, where L(X ) = n + m + 1 and

L(Y ) = n, has a unique factorization

X = Xm+1 Xm · · · X1 X0 = Yfm fm−1 f1 f0

where L(Xi+1) = n + i + 1 = L(Xi ) + 1.

Proposition

1. Being stratified is a property.

2. The category of stratified categories is equivalent to the
category of rooted trees via the free category functor.

8
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CE-systems
A CE-system consists of
1. two strict category structures F and C on the same set of

objects Ob(F) = Ob(C),
2. an identity-on-objects functor I : F → C between them,
3. a chosen object > which is terminal in F, and
4. for every f : ∆→ Γ in C and any A ∈ F/Γ, a choice of a

pullback square

∆.f ∗A Γ.A

∆ Γ

π2(f ,A)

I(f ∗A) I(A)

f

which is functorial in A and f .

A CE-system is rooted if I(>) = > is terminal in C.

9



Esys rCEsys

Bsys
stratified
Esys '

stratified
rCEsys Csys

'

' '

C-system:
I Functorial choice of pullbacks.
I Rooted tree of type dependency.

CE-system:
I Functorial choice of pullbacks.
I If stratified: rooted tree of type dependency.

10



E-systems
An E-system E consists of a category F with a terminal object []
together with:
1. A term structure: for every A ∈ F/Γ, a set T (A).
2. A substitution structure: for every A ∈ F/Γ and x ∈ T (A), a

functor
Sx : F/Γ.A→ F/Γ

with term structure: for every B ∈ F/Γ.A, a function

T (B)→ T (Sx (B)).

3. A weakening structure: for every A ∈ F/Γ, a functor with term
structure WA : E/Γ→ E/Γ.A.

4. A projection structure: for every A ∈ F/Γ, an element
idtmA ∈ T (WA(A)).

Satisfying equations similar to those of B-systems, plus:
Sx and WA preserve terminal objects, and
WA is functorial in A, i.e. WidΓ = IdE/Γ and WAP = WPWA.

11



From B-systems to E-systems
B a B-system. F is the free category on the (graph of the) rooted
tree T(B) of single-step type dependencies.
Arrows in F are of the form (X , k) : (n + k,X )→ (n, ftk(X )).

The term structure T (X , k) is defined inductively together with
simultaneous substitutions Sk

t of tuples of terms t ∈ T (X , k).
I On arrows of length 0 and 1: for X ∈ Bn

T (X , 0) := {∗} S0
∗ := id : B/X → B/X

T (X , 1) := ∂−1(X ) ⊆ B̃n S1
x := Sx : B/X → B/ft(X )

I For X ∈ Bn and k ≤ n by induction:
suppose that for every m ≤ n and Y ∈ Bm we have T (Y , k)
for k ≤ m and Sk

s : B/Y → B/ftk(Y ) for s ∈ T (Y , k) , then

T (X , k+1) :=
∐

t∈T (ft(X),k)
T (Sk

t (X ), 1) Sk+1
(t,x) := Sx (Sk

t /X )

12
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From CE-systems to E-systems
I : F → C a CE-system.
Define an E-system on F as follows:

T (A) := {x : Γ→ Γ.A | I(A)x = idΓ}, for A ∈ F/Γ

WA := A∗ : F/Γ→ F/Γ.A, for A ∈ F/Γ

Sx := x∗ : F/Γ.A→ F/Γ, for x ∈ T (A)

Γ.A

Γ.A.WA(A) Γ.A

Γ.A Γ

idΓ.A

idΓ.A

idtmA

π2(I(A),A)

I(WA(A)) I(A)

I(A)

14



From E-systems to CE-systems
E an E-system.
For A,B ∈ F/Γ, an internal morphism over Γ is an element of

thom(A,B) := T (WA(B))

15
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E an E-system.
For A,B ∈ F/Γ, an internal morphism over Γ is an element of

thom(A,B) := T (WA(B))

Note that, given also P ∈ F/Γ.A:

thom(PA,B) = T (WPA(B)) = T (WPWA(B)) = thom(P,WA(B))

Indeed once we have a category of internal morphisms

(−) ◦ A aWA
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From E-systems to CE-systems
E an E-system.
For A,B ∈ F/Γ, an internal morphism over Γ is an element of

thom(A,B) := T (WA(B))

Given f ∈ thom(A,B), define precomposition by f as

E/Γ.B E/Γ.A

E/Γ.A.WA(B)

f ∗

WA/B Sf

Then if g ∈ thom(B,C), define g ◦ f := f ∗(g).

Identities are given by idtmA ∈ T (WA(A)) = thom(A,A).

Obtain a category CE(Γ) of internal morphisms over Γ.
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From E-systems to CE-systems
Define IΓ

E : F/Γ→ CE(Γ) as

Γ.A.P Γ.A

WP(idtmA) ∈ thom(PA,A)

Γ
PA

P

A

Proposition
E and E-system. For every Γ,

F/Γ CE(Γ)
IΓ
E

is a rooted CE-system.

The choice of pullbacks is also given algebraically using the
operations of E.
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Equivalence
Theorem (Ahrens–E.–North–Rijke)

1. The functors Esys� rCEsys give rise to an equivalence of
categories.

2. The equivalence restricts to stratified systems.
3. It follows that Bsys ≡ Csys.

Esys rCEsys

Bsys
stratified
Esys '

stratified
rCEsys Csys

'

' '

Details in:
B-systems and C-systems are equivalent. arXiv:2111.09948
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