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Duality for finite-limit theories (Gabriel-Ulmer duality3)

Theorem

There is a bi-equivalence of 2-categories

FL
{compact objects}op ← [ X←−−−−−−−−−−−−−−−−−→
L 7→ Mod(L) := FL(L,Set)

LFPop.

� FL is the 2-category of small finite-limit categories and finite-limit preserving functors

� LFP is the 2-category of locally finitely presentable categories, i.e.

locally small cocomplete categories with a dense set of compact (finitely presentable) objects, and
functors preserving small limits and filtered colimits (‘forgetful functors’).

� Intuition: view small lex categories as theories, and LFP categories as categories of models

� This makes sense since every lex category can be exhibited as categorical incarnation of an
essentially algebraic theory1 or a generalized algebraic theory2

1 P. Freyd. “Aspects of topoi”. In: Bulletin of the Australian Mathematical Society (1972).
2 J. Cartmell. “Generalised algebraic theories and contextual categories”. In: Annals of Pure and Applied

Logic (1986).
3 P. Gabriel and F. Ulmer. Lokal präsentierbare Kategorien. Springer-Verlag, 1971.
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Duality for finite-product theories4

There’s a ‘restriction’ of G–U duality to finite-product theories (corresponding to many-sorted
ordinary algebraic theories):

FPcc ALGop

FL LFPop

C 7→ FP(C,Set)

{compact projectives}op ← [ X

F JUa
L 7→ FL(L,Set)

{compact objects}op ← [ X

� FPcc is the 2-category of Cauchy-complete finite-product categories

� ALG is the 2-category of algebraic categories and algebraic functors

An algebraic category is an l.f.p. category which is Barr-exact and where the compact (regular)
projective objects are dense
An algebraic functor is a functor that preserves small limits, filtered colimits, and regular
epimorphisms.

sifted colimits

� Clan-duality can be viewed as a refinement of GU-duality which allows to control the amount of
limit-preservation in the models

4 J. Adámek, J. Rosický, and E.M. Vitale. Algebraic theories: a categorical introduction to general algebra.
Cambridge University Press, 2010.
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Clans

Definition

A clan is a small category T with terminal object 1, equipped with a class T† ⊆ mor(T ) of
morphisms – called display maps and written _ – such that

1. pullbacks of display maps along all maps exist and are display maps
∆+ Γ+

∆ Γ

s+

q y p

s

,

2. display maps are closed under composition, and

3. isomorphisms and terminal projections Γ _ 1 are display maps.

� Definition due to Taylor5, name due to Joyal6 (‘a clan is a collection of families’)

� Relation to semantics of dependent type theory: display maps represent type families.

� Observation: clans have finite products (as pullbacks over 1).

5 P. Taylor. “Recursive domains, indexed category theory and polymorphism”. PhD thesis. University of
Cambridge, 1987, § 4.3.2.

6 A. Joyal. “Notes on clans and tribes”. In: arXiv preprint arXiv:1710.10238 (2017).
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Examples

� Finite-product categories C can be viewed as clans with C† = {product projections}
� Finite-limit categories L can be viewed as clans with L† = mor(L)

We call such clans FP-clans, and FL-clans, respectively.

� The syntactic category of every Cartmell-style generalized algebraic theory is a clan.

� Clan for categories:

K = {categories free on finite graphs}op ⊆ Catop

K† = {functors induced by graph inclusions}op

K can be viewed as syntactic category of a generalized algebraic theory of categories:

` O sort
x y : O ` A(x , y) sort
x : O ` id(x) : A(x , x)
x y z : O , f : A(x , y) , g : A(y , z) ` g ◦ f : A(x , z)
w x y z : O , e : A(w , x) , f : A(x , y) , g : A(y , z) ` (g ◦ f ) ◦ e = g ◦ (f ◦ e) : A(w , z)
x y : O , f ∈ A(x , y) ` 1 ◦ f = f = f ◦ 1 : A(x , y)

Vertices of a finite graph are object variables and edges are morphism variables in a context.
Graph inclusions are dual to context extensions.
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Models

Definition

A model of a clan T is a functor A : T → Set which preserves 1 and pullbacks of display-maps.

� The category Mod(T ) ⊆ [T ,Set] of models is l.f.p. and contains T op.

� For FP-clans (C, C†) we have Mod(C, C†) = FP(C,Set).

� For FL-clans (L,L†) we have Mod(L,L†) = FL(L,Set).

� Mod(K,K†) = Cat.

T op

Mod(T ) [T ,Set]

Z

⊆

Observation

The same category of models may be represented by different clans.
For example, ordinary algebraic theories can be represented by FP-clans as well as FL-clans.
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The weak factorization system

� Would like duality between clans and their categories of models.

� Since the same l.f.p. category can be represented by different clans, we cannot hope to
reconstruct the clan from the models alone.

� Solution: equip the models with additional structure in form of a weak factorization system.

Definition

Let T be a clan. Define w.f.s. (E ,F) on Mod(T ) by

� F := RLP({Z (p) | p ∈ T†}) class of full maps

� E := LLP(F) class of extensions

I.e. (E ,F) is cofibrantly generated by the image of T† under Z : T op →Mod(T ).

� Call A ∈Mod(T ) a 0-extension, if (0→ A) ∈ E

� E.g. corepresentables Z (Γ) are 0-extensions since terminal projections Γ _ 1 are display maps.

� The same weak factorization system was also introduced by S. Henry in a HoTTEST talk7, see
also8.

7S. Henry, The language of a model category, HoTTEST seminar, Jan. 2020, https://youtu.be/7_X0qbSXlfk
8 S. Henry. “Algebraic models of homotopy types and the homotopy hypothesis”. In: arXiv preprint

arXiv:1609.04622 (2016).
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Full maps
� f : A→ B in Mod(T ) is full iff it has the RLP with respect to all Z (p) for display maps

p : ∆ _ Γ.

T (Γ,−) A

T (∆,−) B

Z(p)=T (p,−) f

A(∆) B(∆)

A(Γ) B(Γ)

f∆

A(p) B(p)
fΓ

� This is equivalent to display-naturality-squares being weak pullbacks.

� Considering p : ∆ _ 1 we see that full maps are surjective and hence regular epis.

A(∆) B(∆)

1 1

f∆ A(∆) B(∆)

A(∆)× A(∆) B(∆)× B(∆)

f∆

f∆×f∆

� For FL-clans, only isos are full (consider naturality square for diagonal ∆→ ∆×∆)

� For FP-clans we have

full map = regular epimorphism

0-extension = projective object
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Duality for clans

Theorem (F)

There is a bi-equivalence of 2-categories

Clancc
{compact 0-extensions}op ←[ X←−−−−−−−−−−−−−−−−−−−−→

T 7→ Mod(T )
cAlgop

� Clancc is the 2-category of clans and functors preserving 1, display maps and pullbacks of display
maps

� cAlg is the 2-category of clan-algebraic categories, i.e. categories X equipped with a WFS
(E ,F) of extensions and full maps, such that

1. X is locally small and cocomplete,
2. X has a small dense family of compact 0-extensions (in particular X is l.f.p.),
3. (E ,F) is cofibrantly generated by maps between compact 0-extensions, and
4. X has full and effective quotients of componentwise-full equivalence relations.

� Both directions of the proof are non-trivial, details in the appendix
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Models in Higher Types
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Models in higher types

Let S be the ∞-topos of spaces/types.

Let CMon be the finite-product theory of monoids, and let LMon be the finite-limit theory of monoids.
Then

FP(CMon,Set) ' FL(LMon,Set)

but FP(CMon,S) and FL(LMon,S) are different:

� FL(LMon,S) is just the category of monoids

� FP(CMon,S) is the ∞-category ‘A∞-algebras’, i.e. homotopy-coherent monoids.

Moral

By being ‘slimmer’, finite-product theories leave room for higher coherences when interpreted in
higher types.

This phenomenon was recently discussed under the name ‘animation’ in9, and earlier in10

9 K. Cesnavicius and P. Scholze. “Purity for flat cohomology”. In: arXiv preprint arXiv:1912.10932 (2019).
10 D. Quillen. Homotopical algebra. Springer, 1967.
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Four clans for categories

Cat admits several clan-algebraic weak factorization systems:

� (E1,F1) is cofib. generated by {(0→ 1), (2→ 2) }
� (E2,F2) is cofib. generated by {(0→ 1), (2→ 2), (2→ 1)}
� (E3,F3) is cofib. generated by {(0→ 1), (2→ 2), (P→ 2) }
� (E4,F4) is cofib. generated by {(0→ 1), (2→ 2), (P→ 2), (2→ 1)}

where P = (•⇒ •).

The right classes are:

F1 = {full and surjective-on-objects functors}
F2 = {full and bijective-on-objects functors}
F3 = {fully faithful and surjective-on-objects functors}
F4 = {isos}

Note that F3 is the class of trivial fibrations for the canonical model structure on Cat.
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Four clans for categories

These correspond to the following clans:

T1 = {free cats on fin. graphs}op T †1 = {graph inclusions}

T2 = {free cats on fin. graphs}op T †2 = {injective-on-edges maps}

T3 = {f.p. cats}op T †3 = {injective-on-objects functors}

T4 = {f.p. cats}op T †4 = {all functors}

Models in higher types:

∞-Mod(T1) = {Segal spaces}
∞-Mod(T2) = {Segal categories}
∞-Mod(T3) = {pre-categories}
∞-Mod(T4) = {discrete 1-categories}
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Syntax
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From clans to theories

� Duality between clans and clan-algebraic categories is a theory/model duality, where the
theories themselves are of a categorical nature.

Clancc
comp(X)op ←[ X←−−−−−−−−−−−−→
T 7→ Mod(T )

cAlgop

� There’s also a correspondence between categorical theories (clans) and syntactic theories (GATs)

The syntactic category of every GAT is a clan
Moreover, (I think that) every clan is equivalent to the syntactic category of a GAT, giving rise to
an essentially surjective map as below.

Clancc cAlgop

{GATs} Clan

'

� This map can be enhanced to an equivalence by defining 1- and 2-cells between GATs to be 1-
and 2-cells between the corresponding clans.
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Four GATs for categories

GAT for T1

� ` O sort � x : O ` 1 : A(x , x)

� x y : O ` A(x , y) sort � x y z : O , f : A(x , y) , g : A(y , z) ` g ◦ f : A(x , z)

� w x y z : O , e : A(w , x) , f : A(x , y) , g : A(y , z) ` (g ◦ f ) ◦ e = g ◦ (f ◦ e) : A(w , z)

� x y : O , f ∈ A(x , y) ` 1 ◦ f = f = f ◦ 1 : A(x , y)

� T2 should have an equivalent syntactic category but more display maps, including the diagonal

δO = (x , x) : [x : O]→ [x y : O].

� This is not a context projection, but we can make it isomorphic to one by introducing a new type
over [x y : O] and forcing it to be isomorphic to [x : O]
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Four GATs for categories

Additional axioms for T2

� x y : O ` E (x , y) sort

� x : O ` r : E (x , x)

� x y : O , p : E (x , y) ` x = y

� x y : O , p q : E (x , y) ` p = q

� In other words, we add an extensional equality type for O ‘by hand’

� With this we can show the isomorphism of contexts [x : O] ∼= [x y : O , p : E (x , y)]

� Similarly, add extensional equality for morphisms to get Te :

Additional axioms for T3

� x y : O , f g : A(x , y) ` F (f , g) sort � x y : O , f g : A(x , y) , p : F (f , g) ` f = g

� x y : O , f : A(x , y) ` s : F (f , f ) � x y : O , f g : A(x , y) , p q : F (f , g) ` p = q

� Adding both sets of axioms yields T4
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Appendix – the proof
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Reconstructing the clan

Definition

Given a clan T , let C ⊆Mod(T ) be the full subcategory on compact 0-extensions.

� C is a coclan with extensions as ”co-display maps”.

� Z : T op →Mod(T ) factors through C since corepresentables Z (Γ) are compact and 0-extensions.

C

T op Mod(T )
Z

E

� Have to show that E is a Morita equivalence, i.e. every compact 0-extension is a retract of a
corepresentable.
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The fat small object argument

Motivation: Subcategories of models for FP-theory C and clan T .

Cop {compact}

{flat}
{projective} Mod(C) [C,Set]

reflexive coeqalizer

completion

sifted
colim

it com
pletion

filtered
colim

it

com
pletion

fi
ltered

co
lim

it

co
m

p
letio

n

ex/wlex completion
⊆

T op {compact}

{flat}
{0-extension} Mod(T ) [T ,Set]

filtered
colim

it

com
pletion

fi
ltered

co
lim

it

co
m

p
letio

n

⊆

� Flat algebras are filtered colimits of corepresentables, computed freely in the functor categories.

� For algebraic theories we have {projective} ⊆ {flat} since

arbitrary free objects are filtered colimits of free objects over finite sets
projective objects are retracts of free objects

� In the general clan case, {0-extension} ⊆ {flat} by the fat small object argument11.

11 M. Makkai, J. Rosicky, and L. Vokrinek. “On a fat small object argument”. In: Advances in Mathematics
(2014).
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Reconstructing the clan

Theorem

The full inclusion E : T op ↪→ C exhibits C as Cauchy-completion of T op, i.e. every compact
0-extension is a retract of a corepresentable.

Proof.

� Let C ∈ C.

� Since 0-extensions are flat,
∫
C is filtered, thus C is a filtered colimit of corepresentables.

� Since C is compact, idC factors through a colimit inclusion map.

C

Z (Γ) C

id

σ(Γ,x)
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Other direction – Idea of proof

� Show that the nerve/realization adjunction

C X

Mod(Cop)

J

Z
N

a
L L(A) = colim(

∫
A→ C J−→ X)

N(X ) = X(J(−),X )

is an equivalence.

� By density the right adjoint N is fully faithful, i.e. the counit is an isomorphism.

� It remains to show that the unit of the adjunction is an isomorphism, i.e.

A(C )
∼=−→ X(C , colim(

∫
A→ C J−→ X)).

for all A ∈Mod(Cop) and C ∈ C.

� The functor X (C ,−) preserves filtered colimits and quotients of componentwise-full equivalence

relations, so it suffices to decompose colim(
∫
A→ C J−→ X) in terms of these constructions.

� This is essentially what we’re doing in the following.
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Jointly full cones

� Let D : I → X be a diagram in an adequate category.

� A cone (A, φ) over D is called jointly full, if for every cone (C , γ), extension e : B → C and map
g : B → A constituting a cone morphism g : (B, γ ◦ e)→ (A, φ), there exists a map h : C → A
such that

B A

C Di

g

e φi

γi

h

commutes for all i ∈ I.

� Observation: The cone (A, φ) is jointly full iff the canonical map to the limit is full.
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Definition

A nice diagram in an adequate category X is a truncated simplicial diagram

A2 A1 A0

d0

d1

d2

d0

d1s1

s0
s0

where

1. A0, A1, and A2 are 0-extensions,

2. the maps d0, d1 : A1 → A0 are full,

3. in the square
A2 A1

A1 A0

d0
d2 d1

d0

the span constitutes a jointly full diagram over the cospan,

4. there exists a symmetry map
A1 A0

A0 A1

d1

d0
σ

d1

d0
making the triangles commute, and

5. there exists a 0-extension Ã and full maps f , g : Ã� A1 constituting a jointly full cone over the
diagram

A1 A1

A0 A0

d1

d0

d0

d1
.
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Nice diagrams

Lemma

For any nice diagram, the pairing A1
〈d0,d1〉−−−−→ A0 × A0 admits a decomposition A1 � R

〈r0,r1〉−−−→ A0 × A0

into a full map and a monomorphism, and 〈r0, r1〉 is a componentwise-full equivalence relation.

Lemma

Assume X is adequate and F : X→ Set preserves finite limits and sends full maps to surjections.
Then for every nice diagram, F preserves coequalizers of the arrows d0, d1 : A1 → A0.

Lemma

The restriction L′ of L in the nerve/realization adjunction

C X

{0-ext}

Mod(Cop)

J

N

L′

a

to 0-extensions is fully faithful and preserves full maps and nice diagrams.
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Nice diagrams

Lemma

For every object A of an adequate category X there exists a nice diagram

A2 A1 A0

d0

d1

d2

d0

d1s1

s0
s0

such that A is the coequalizer of d0, d1 : A1 → A0.

Proof.

� A0 is given by covering A by a 0-extension, i.e. factoring 0→ A as 0 ↪→ A0
e
� A.

� A1 is given by covering the kernel of A0 � A by a 0-extension
0 A1 R A0

A0 A

y
r0

r1 e
e

� A2 is given by covering the following pullback:
0 A2 • A1

A1 A0

y
d0

d1
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The proof

Proof of the theorem.

Let C ⊆ X be the co-clan of compact 0-extensions. It remains to show that

AC ∼= X(C , LA).

for all A ∈Mod(Cop) and C ∈ C. Let A• be a nice diagram with coequalizer A. We have

X(C , LA) = X(C , L(coeq(A1 ⇒ A0))) since A = coeq(A1 ⇒ A0)
∼= X(C , coeq(LA1 ⇒ LA0)) since L preserves colimits
∼= coeq(X(C , LA1)⇒ X(C , LA0)) since X(C ,−) preserves coeqs of nice diags
∼= coeq(A1C ⇒ A0C ) since LAi = colim(

∫
Ai → C→ X) filtered

∼= coeq(Mod(ZC ,A1)⇒Mod(ZC ,A0))
∼= Mod(ZC , coeq(A1 ⇒ A0))
∼= Mod(ZC ,A))
∼= AC
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Thanks for your attention!
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