Characterizing clan-algebraic categories

Jonas Frey

Stockholm, 21 May 2022

Duality for finite-limit theories (Gabriel-Ulmer duality³)

Theorem

There is a bi-equivalence of 2-categories

$$\mathsf{FL} \quad \xleftarrow{ \{\mathsf{compact objects}\}^\mathsf{op} \; \leftarrow \; \mathfrak{X} } \quad \mathsf{LFP}^\mathsf{op}.$$

- FL is the 2-category of small finite-limit categories and finite-limit preserving functors
- LFP is the 2-category of locally finitely presentable categories, i.e.
 - locally small cocomplete categories with a dense set of compact (finitely presentable) objects, and
 - functors preserving small limits and filtered colimits ('forgetful functors').
- Intuition: view small lex categories as theories, and LFP categories as categories of models
- This makes sense since every lex category can be exhibited as categorical incarnation of an
 essentially algebraic theory¹ or a generalized algebraic theory²

P. Freyd. "Aspects of topoi". In: Bulletin of the Australian Mathematical Society (1972).

 $^{^2}$ J. Cartmell. "Generalised algebraic theories and contextual categories". In: *Annals of Pure and Applied Logic* (1986).

P. Gabriel and F. Ulmer. Lokal präsentierbare Kategorien. Springer-Verlag, 1971.

Duality for finite-product theories⁴

There's a 'restriction' of G–U duality to **finite-product theories** (corresponding to many-sorted **ordinary algebraic theories**):

$$\begin{array}{c} \textbf{FP}_{\mathsf{cc}} \xleftarrow{\hspace{0.5cm} \mathcal{C} \mapsto \mathsf{FP}(\mathcal{C}, \mathsf{Set})} & \mathsf{ALG}^{\mathsf{op}} \\ \not\vdash \left(\neg \middle \cup \mathcal{L} \mapsto \mathsf{FL}(\mathcal{L}, \mathsf{Set}) \right) & & \downarrow \mathcal{J} \\ \hline \\ \textbf{FL} \xleftarrow{\hspace{0.5cm} \mathcal{L} \mapsto \mathsf{FL}(\mathcal{L}, \mathsf{Set})} & \mathsf{LFP}^{\mathsf{op}} \end{array}$$

- FP_{cc} is the 2-category of Cauchy-complete finite-product categories
- ALG is the 2-category of algebraic categories and algebraic functors
 - An algebraic category is an I.f.p. category which is Barr-exact and where the compact (regular) projective objects are dense
 - An algebraic functor is a functor that preserves small limits, filtered colimits, and regular epimorphisms.

sifted colimits

 Clan-duality can be viewed as a refinement of GU-duality which allows to control the amount of limit-preservation in the models

⁴ J. Adámek, J. Rosický, and E.M. Vitale. *Algebraic theories: a categorical introduction to general algebra*. Cambridge University Press, 2010.

Clans

Definition

A **clan** is a small category \mathcal{T} with terminal object 1, equipped with a class $\mathcal{T}_{\dagger} \subseteq \operatorname{mor}(\mathcal{T})$ of morphisms – called **display maps** and written \rightarrow – such that

- 1. pullbacks of display maps along all maps exist and are display maps $\begin{array}{ccc} \Delta^+ & \xrightarrow{s^+} & \Gamma^+ \\ q^+_{\downarrow} & \xrightarrow{} & \downarrow^p \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\$
- 2. display maps are closed under composition, and
- 3. isomorphisms and terminal projections $\Gamma \rightarrow 1$ are display maps.
- Definition due to Taylor⁵, name due to Joyal⁶ ('a clan is a collection of families')
- Relation to semantics of dependent type theory: display maps represent type families.
- Observation: clans have finite products (as pullbacks over 1).

 $^{^{5}}$ P. Taylor. "Recursive domains, indexed category theory and polymorphism". PhD thesis. University of Cambridge, 1987, § 4.3.2.

A. Joyal. "Notes on clans and tribes". In: arXiv preprint arXiv:1710.10238 (2017).

Examples

- Finite-product categories \mathcal{C} can be viewed as clans with $\mathcal{C}_{\dagger} = \{\text{product projections}\}$
- Finite-limit categories \mathcal{L} can be viewed as clans with $\mathcal{L}_{\dagger} = \operatorname{mor}(\mathcal{L})$

We call such clans FP-clans, and FL-clans, respectively.

- The syntactic category of every Cartmell-style generalized algebraic theory is a clan.
- Clan for categories:

```
\mathcal{K} = \{\text{categories free on finite graphs}\}^{\text{op}} \subseteq \text{Cat}^{\text{op}}
\mathcal{K}_{\dagger} = \{\text{functors induced by graph inclusions}\}^{\text{op}}
```

 $\mathcal K$ can be viewed as syntactic category of a generalized algebraic theory of categories:

```
• \vdash O sort

• xy : O \vdash A(x,y) sort

• x : O \vdash \operatorname{id}(x) : A(x,x)

• xyz : O, f : A(x,y), g : A(y,z) \vdash g \circ f : A(x,z)

• xyz : O, e : A(x,y), f : A(x,y), g : A(y,z) \vdash (g \circ f) \circ e = g \circ (f \circ e) : A(x,z)

• xy : O, f \in A(x,y) \vdash 1 \circ f = f = f \circ 1 : A(x,y)
```

Vertices of a finite graph are object variables and edges are morphism variables in a context. Graph inclusions are dual to context extensions.

Models

Definition

A model of a clan \mathcal{T} is a functor $A: \mathcal{T} \to \mathbf{Set}$ which preserves 1 and pullbacks of display-maps.

- The category $Mod(\mathcal{T}) \subseteq [\mathcal{T}, Set]$ of models is l.f.p. and contains \mathcal{T}^{op} .
- For FP-clans $(\mathcal{C}, \mathcal{C}_{\dagger})$ we have $\mathbf{Mod}(\mathcal{C}, \mathcal{C}_{\dagger}) = \mathbf{FP}(\mathcal{C}, \mathbf{Set})$.
- For FL-clans $(\mathcal{L}, \mathcal{L}_{\dagger})$ we have $\mathbf{Mod}(\mathcal{L}, \mathcal{L}_{\dagger}) = \mathbf{FL}(\mathcal{L}, \mathbf{Set})$.
- $\mathsf{Mod}(\mathcal{K}, \mathcal{K}_{\dagger}) = \mathsf{Cat}$.

Observation

The same category of models may be represented by different clans.

For example, ordinary algebraic theories can be represented by FP-clans as well as FL-clans.

The weak factorization system

- Would like duality between clans and their categories of models.
- Since the same l.f.p. category can be represented by different clans, we cannot hope to reconstruct the clan from the models alone.
- Solution: equip the models with additional structure in form of a **weak factorization system**.

Definition

Let \mathcal{T} be a clan. Define w.f.s. $(\mathcal{E}, \mathcal{F})$ on $\mathsf{Mod}(\mathcal{T})$ by

- $\mathcal{F} := \mathsf{RLP}(\{Z(p) \mid p \in \mathcal{T}_{\dagger}\})$ class of **full maps**
- $\mathcal{E} := \mathsf{LLP}(\mathcal{F})$ class of **extensions**

I.e. $(\mathcal{E}, \mathcal{F})$ is cofibrantly generated by the image of \mathcal{T}_{\dagger} under $Z : \mathcal{T}^{\mathsf{op}} \to \mathsf{Mod}(\mathcal{T})$.

- Call $A \in \mathbf{Mod}(\mathcal{T})$ a 0-extension, if $(0 \to A) \in \mathcal{E}$
- E.g. corepresentables $Z(\Gamma)$ are 0-extensions since terminal projections $\Gamma \to 1$ are display maps.
- The same weak factorization system was also introduced by S. Henry in a HoTTEST talk⁷, see also⁸.

⁷S. Henry, *The language of a model category*, HoTTEST seminar, Jan. 2020, https://youtu.be/7_X0qbSX1fk

8 S. Henry. "Algebraic models of homotopy types and the homotopy hypothesis". In: arXiv preprint arXiv:1609.04622 (2016).

Full maps

• $f: A \to B$ in $Mod(\mathcal{T})$ is full iff it has the RLP with respect to all Z(p) for display maps $p: \Delta \to \Gamma$.

- This is equivalent to display-naturality-squares being weak pullbacks.
- Considering $p: \Delta \to 1$ we see that full maps are surjective and hence regular epis.

$$\begin{array}{ccccc} A(\Delta) & \xrightarrow{f_{\Delta}} & B(\Delta) & & & A(\Delta) & \xrightarrow{f_{\Delta}} & B(\Delta) \\ \downarrow & & \downarrow & & \downarrow & & \downarrow \\ 1 & \longrightarrow & 1 & & A(\Delta) \times A(\Delta) & \xrightarrow{f_{\Delta} \times f_{\Delta}} & B(\Delta) \times B(\Delta) \end{array}$$

- For FL-clans, only isos are full (consider naturality square for diagonal $\Delta \to \Delta \times \Delta$)
- For FP-clans we have

Duality for clans

Theorem (F)

There is a bi-equivalence of 2-categories

$$\begin{array}{ccc} \textbf{Clan}_{\text{cc}} & \xleftarrow{ \{\text{compact 0-extensions}\}^{\text{op}} \hookleftarrow \mathfrak{X} } & \textbf{cAlg}^{\text{op}} \end{array}$$

- Clan_{cc} is the 2-category of clans and functors preserving 1, display maps and pullbacks of display maps
- cAlg is the 2-category of clan-algebraic categories, i.e. categories \mathcal{X} equipped with a WFS $(\mathcal{E}, \mathcal{F})$ of extensions and full maps, such that
 - 1. \mathfrak{X} is locally small and cocomplete,
 - 2. \mathfrak{X} has a small dense family of compact 0-extensions (in particular \mathfrak{X} is l.f.p.),
 - 3. $(\mathcal{E}, \mathcal{F})$ is cofibrantly generated by maps between compact 0-extensions, and
 - 4. \mathfrak{X} has full and effective quotients of componentwise-full equivalence relations.
- Both directions of the proof are non-trivial, details in the appendix

Models in Higher Types

Models in higher types

Let \mathcal{S} be the ∞ -topos of spaces/types.

Let $\mathcal{C}_{\mathsf{Mon}}$ be the finite-product theory of monoids, and let $\mathcal{L}_{\mathsf{Mon}}$ be the finite-limit theory of monoids. Then

$$\mathsf{FP}(\mathcal{C}_\mathsf{Mon},\mathsf{Set}) \simeq \mathsf{FL}(\mathcal{L}_\mathsf{Mon},\mathsf{Set})$$

but $\mathsf{FP}(\mathcal{C}_{\mathsf{Mon}}, \mathcal{S})$ and $\mathsf{FL}(\mathcal{L}_{\mathsf{Mon}}, \mathcal{S})$ are different:

- $FL(\mathcal{L}_{Mon}, \mathcal{S})$ is just the category of monoids
- $\mathsf{FP}(\mathcal{C}_{\mathsf{Mon}}, \mathcal{S})$ is the ∞ -category ' A_{∞} -algebras', i.e. homotopy-coherent monoids.

Moral

By being 'slimmer', finite-product theories leave room for higher coherences when interpreted in higher types.

This phenomenon was recently discussed under the name 'animation' in⁹, and earlier in¹⁰

⁹ K. Cesnavicius and P. Scholze. "Purity for flat cohomology". In: arXiv preprint arXiv:1912.10932 (2019).

D. Quillen. Homotopical algebra. Springer, 1967.

Four class for categories

Cat admits several clan-algebraic weak factorization systems:

```
• (\mathcal{E}_1,\mathcal{F}_1) is cofib. generated by \{(0 \to 1),(2 \to 2)\}

• (\mathcal{E}_2,\mathcal{F}_2) is cofib. generated by \{(0 \to 1),(2 \to 2),(2 \to 1)\}

• (\mathcal{E}_3,\mathcal{F}_3) is cofib. generated by \{(0 \to 1),(2 \to 2),(\mathbb{P} \to 2)\}

• (\mathcal{E}_4,\mathcal{F}_4) is cofib. generated by \{(0 \to 1),(2 \to 2),(\mathbb{P} \to 2),(2 \to 1)\}

where \mathbb{P}=(\bullet \rightrightarrows \bullet).
```

The right classes are:

```
      \mathcal{F}_1 = \{ \text{full and surjective-on-objects functors} \} 
      \mathcal{F}_2 = \{ \text{full and bijective-on-objects functors} \} 
      \mathcal{F}_3 = \{ \text{fully faithful and surjective-on-objects functors} \} 
      \mathcal{F}_4 = \{ \text{isos} \}
```

Note that \mathcal{F}_3 is the class of trivial fibrations for the canonical model structure on Cat.

Four class for categories

These correspond to the following clans:

Models in higher types:

Syntax

From clans to theories

Duality between clans and clan-algebraic categories is a theory/model duality, where the
theories themselves are of a categorical nature.

$$\mathsf{Clan}_{\mathsf{cc}} \quad \xleftarrow{\quad \operatorname{comp}(\mathfrak{X})^{\mathsf{op}} \, \leftarrow \, \mathfrak{X}} \quad \mathsf{cAlg}^{\mathsf{op}}$$

- There's also a correspondence between categorical theories (clans) and syntactic theories (GATs)
 - The syntactic category of every GAT is a clan
 - Moreover, (I think that) every clan is equivalent to the syntactic category of a GAT, giving rise to an essentially surjective map as below.

$$\begin{array}{ccc} & & \text{Clan}_{cc} \longleftarrow & \cong & \rightarrow & \text{cAlg}^{op} \\ & & & \downarrow & & \\ & & & \text{Clan} & & & \end{array}$$

 This map can be enhanced to an equivalence by defining 1- and 2-cells between GATs to be 1and 2-cells between the corresponding clans.

Four GATs for categories

```
GAT for \mathcal{T}_1
```

 $\bullet \vdash O$ sort

- $x : O \vdash 1 : A(x,x)$
- $xy: O \vdash A(x,y)$ sort $xy: O, f: A(x,y), g: A(y,z) \vdash g \circ f: A(x,z)$
- $w \times y \times z : O, e : A(w, x), f : A(x, y), g : A(y, z) \vdash (g \circ f) \circ e = g \circ (f \circ e) : A(w, z)$
- $xy : O, f \in A(x,y) \vdash 1 \circ f = f = f \circ 1 : A(x,y)$
- \mathcal{T}_2 should have an equivalent syntactic category but more display maps, including the diagonal

$$\delta_O = (x, x) : [x : O] \rightarrow [x y : O].$$

• This is not a context projection, but we can make it isomorphic to one by introducing a new type over $[x \ y : O]$ and forcing it to be isomorphic to [x : O]

Four GATs for categories

Additional axioms for \mathcal{T}_2

- $xy: O \vdash E(x,y)$ sort
- $\bullet x : O \vdash r : E(x,x)$

- $xy : O, p : E(x,y) \vdash x = y$
- $xy : O, pq : E(x,y) \vdash p = q$
- In other words, we add an extensional equality type for O 'by hand'
- With this we can show the isomorphism of contexts $[x:O] \cong [xy:O,p:E(x,y)]$
- Similarly, add extensional equality for morphisms to get \mathcal{T}_e :

Additional axioms for \mathcal{T}_3

- $xy : O, fg : A(x,y) \vdash F(f,g)$ sort
 - rt
- $xy : O, fg : A(x,y), p : F(f,g) \vdash f = g$

• $xy : O, f : A(x,y) \vdash s : F(f,f)$

• $xy : O, fg : A(x,y), pq : F(f,g) \vdash p = q$

• Adding both sets of axioms yields \mathcal{T}_4

Appendix – the proof

Reconstructing the clan

Definition

Given a clan \mathcal{T} , let $\mathbb{C} \subseteq \mathsf{Mod}(\mathcal{T})$ be the full subcategory on **compact** 0-extensions.

- C is a **coclan** with extensions as "co-display maps".
- $Z : \mathcal{T}^{op} \to \mathbf{Mod}(\mathcal{T})$ factors through $\mathbb C$ since corepresentables $Z(\Gamma)$ are compact and 0-extensions.

 Have to show that E is a Morita equivalence, i.e. every compact 0-extension is a retract of a corepresentable.

The fat small object argument

Motivation: Subcategories of models for FP-theory $\mathcal C$ and clan $\mathcal T$.

- Flat algebras are filtered colimits of corepresentables, computed *freely* in the functor categories.
- For algebraic theories we have $\{projective\} \subseteq \{flat\}$ since
 - arbitrary free objects are filtered colimits of free objects over finite sets
 - projective objects are retracts of free objects
- In the general clan case, $\{0\text{-extension}\}\subseteq \{\text{flat}\}\$ by the **fat small object argument**¹¹.

M. Makkai, J. Rosicky, and L. Vokrinek. "On a fat small object argument". In: *Advances in Mathematics* (2014).

Reconstructing the clan

Theorem

The full inclusion $E: \mathcal{T}^{op} \hookrightarrow \mathbb{C}$ exhibits \mathbb{C} as *Cauchy-completion* of \mathcal{T}^{op} , i.e. every compact 0-extension is a retract of a corepresentable.

Proof.

- Let $C \in \mathbb{C}$.
- Since 0-extensions are flat, $\int C$ is filtered, thus C is a filtered colimit of corepresentables.
- Since *C* is compact, id_{*C*} factors through a colimit inclusion map.

21 / 29

Other direction – Idea of proof

• Show that the nerve/realization adjunction

is an equivalence.

- ullet By density the right adjoint N is fully faithful, i.e. the counit is an isomorphism.
- It remains to show that the unit of the adjunction is an isomorphism, i.e.

$$A(C) \xrightarrow{\cong} \mathfrak{X}(C, \operatorname{colim}(\int A \to \mathbb{C} \xrightarrow{J} \mathfrak{X})).$$

for all $A \in \mathbf{Mod}(\mathbb{C}^{\mathrm{op}})$ and $C \in \mathbb{C}$.

- The functor $\mathcal{X}(C, -)$ preserves filtered colimits and quotients of componentwise-full equivalence relations, so it suffices to decompose $\operatorname{colim}(\int A \to \mathbb{C} \xrightarrow{J} \mathfrak{X})$ in terms of these constructions.
- This is essentially what we're doing in the following.

Jointly full cones

- Let $D: \mathcal{I} \to \mathfrak{X}$ be a diagram in an adequate category.
- A cone (A, ϕ) over D is called **jointly full**, if for every cone (C, γ) , extension $e : B \to C$ and map $g : B \to A$ constituting a cone morphism $g : (B, \gamma \circ e) \to (A, \phi)$, there exists a map $h : C \to A$ such that

$$B \xrightarrow{g} A$$

$$e \downarrow \xrightarrow{h} \stackrel{\gamma}{\downarrow} \phi_{i}$$

$$C \xrightarrow{\gamma_{i}} D_{i}$$

commutes for all $i \in \mathcal{I}$.

• **Observation:** The cone (A, ϕ) is jointly full iff the canonical map to the limit is full.

Definition

A **nice diagram** in an adequate category \mathfrak{X} is a truncated simplicial diagram

$$A_2 \stackrel{\overline{\downarrow} d_0}{\underset{d_1}{\longleftarrow} s_0} \xrightarrow{s_0} A_1 \stackrel{\overline{\downarrow} d_0}{\underset{d_1}{\longleftarrow} s_0} \xrightarrow{s_0} A_0$$

where

- 1. A_0 , A_1 , and A_2 are 0-extensions,
- 2. the maps $d_0, d_1: A_1 \rightarrow A_0$ are full,
- 3. in the square $A_1 \longrightarrow A_1 \longrightarrow A_1$ $A_1 \longrightarrow A_0 \longrightarrow A_0$ the span constitutes a jointly full diagram over the cospan,
- 4. there exists a symmetry map $A_1 \xrightarrow{d_1} A_0 \\ A_0 \xleftarrow{d_1} A_1$ making the triangles commute, and
- 5. there exists a 0-extension \tilde{A} and full maps $f,g:\tilde{A} \to A_1$ constituting a jointly full cone over the diagram

$$\begin{array}{cccc}
A_1 & & A_1 \\
d_0 \downarrow & & \downarrow d_1 \\
A_0 & & A_0
\end{array}$$

Nice diagrams

Lemma

For any nice diagram, the pairing $A_1 \xrightarrow{\langle d_0, d_1 \rangle} A_0 \times A_0$ admits a decomposition $A_1 \twoheadrightarrow R \xrightarrow{\langle r_0, r_1 \rangle} A_0 \times A_0$ into a full map and a monomorphism, and $\langle r_0, r_1 \rangle$ is a componentwise-full equivalence relation.

Lemma

Assume \mathfrak{X} is adequate and $F: \mathfrak{X} \to \mathbf{Set}$ preserves finite limits and sends full maps to surjections. Then for every nice diagram, F preserves coequalizers of the arrows $d_0, d_1: A_1 \to A_0$.

Lemma

The restriction L' of L in the nerve/realization adjunction

to 0-extensions is fully faithful and preserves full maps and nice diagrams.

Nice diagrams

Lemma

For every object A of an adequate category $\mathfrak X$ there exists a nice diagram

$$A_2 \xleftarrow{\stackrel{-}{\downarrow} \stackrel{-}{d_0}} \xrightarrow{s_0} A_1 \xleftarrow{\stackrel{-}{\downarrow} \stackrel{-}{d_0}} \xrightarrow{s_0} A_0$$

such that A is the coequalizer of $d_0, d_1 : A_1 \rightarrow A_0$.

Proof.

- A_0 is given by covering A by a 0-extension, i.e. factoring $0 \to A$ as $0 \hookrightarrow A_0 \stackrel{e}{\to} A$.
- A_1 is given by covering the kernel of $A_0 woheadrightarrow A$ by a 0-extension $0 woheadrightarrow A_1 woheadrightarrow R woheadrightarrow A_0 \ woheadrightarrow A_1 woheadrightarrow A_2 woheadrightarrow A_3 woheadrightarrow A_4 woheadrightarrow A_5 woheadrightarrow A_$

The proof

Proof of the theorem.

Let $\mathbb{C} \subseteq \mathfrak{X}$ be the co-clan of compact 0-extensions. It remains to show that

$$AC \cong \mathfrak{X}(C, LA).$$

for all $A \in \mathbf{Mod}(\mathbb{C}^{op})$ and $C \in \mathbb{C}$. Let A_{\bullet} be a nice diagram with coequalizer A. We have

```
 \mathfrak{X}(C,LA) = \mathfrak{X}(C,L(\operatorname{coeq}(A_1 \rightrightarrows A_0))) \qquad \text{since } A = \operatorname{coeq}(A_1 \rightrightarrows A_0)   \cong \mathfrak{X}(C,\operatorname{coeq}(LA_1 \rightrightarrows LA_0)) \qquad \text{since } L \text{ preserves colimits}   \cong \operatorname{coeq}(\mathfrak{X}(C,LA_1) \rightrightarrows \mathfrak{X}(C,LA_0)) \qquad \text{since } \mathcal{X}(C,-) \text{ preserves coeqs of nice diags}   \cong \operatorname{coeq}(A_1C \rightrightarrows A_0C) \qquad \text{since } \mathcal{X}(C,-) \text{ preserves coeqs of nice diags}   \cong \operatorname{coeq}(\operatorname{Mod}(ZC,A_1) \rightrightarrows \operatorname{Mod}(ZC,A_0))   \cong \operatorname{Mod}(ZC,\operatorname{coeq}(A_1 \rightrightarrows A_0))   \cong \operatorname{Mod}(ZC,\operatorname{coeq}(A_1 \rightrightarrows A_0))   \cong \operatorname{Mod}(ZC,A))   \cong \operatorname{AC}
```

Related work

- B. Ahrens, P. North, M. Shulman, and D. Tsementzis. "A higher structure identity principle". English. In: *Proceedings of the 2020 35th annual ACM/IEEE symposium on logic in computer science, LICS 2020, virtual event, July 8–11, 2020.* New York, NY: Association for Computing Machinery (ACM), 2020
- I. Di Liberti and J. Rosický. "Enriched Locally Generated Categories". In: (Sept. 2020).
 arXiv: 2009.10980 [math.CT]
- C.L. Subramaniam. "From dependent type theory to higher algebraic structures". In: (Oct. 2021). arXiv: 2110.02804 [math.CT]
- S. Henry. "Algebraic models of homotopy types and the homotopy hypothesis". In: arXiv preprint arXiv:1609.04622 (2016)

Thanks for your attention!