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Duality for finite-limit theories (Gabriel-Ulmer duality®)

Theorem

There is a bi-equivalence of 2-categories

{compact objects}°” +— X

FL LFPP.

L+ Mod(L) := FL(L,Set)

e FL is the 2-category of small finite-limit categories and finite-limit preserving functors

e LFP is the 2-category of locally finitely presentable categories, i.e.

o locally small cocomplete categories with a dense set of compact (finitely presentable) objects, and
o functors preserving small limits and filtered colimits (‘forgetful functors’).

e Intuition: view small lex categories as theories, and LFP categories as categories of models

e This makes sense since every lex category can be exhibited as categorical incarnation of an
essentially algebraic theory! or a generalized algebraic theory?

P. Freyd. “Aspects of topoi”. In: Bulletin of the Australian Mathematical Society (1972).
2 J. Cartmell. “Generalised algebraic theories and contextual categories”. In: Annals of Pure and Applied
Logic (1986).
3 P. Gabriel and F. Ulmer. Lokal prasentierbare Kategorien. Springer-Verlag, 1971.
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Duality for finite-product theories®

There's a ‘restriction’ of G-U duality to finite-product theories (corresponding to many-sorted
ordinary algebraic theories):
C — FP(C,Set)

op
FPec {compact projectives}°” <+ X ALG
F </—{> U \{J
FL L — FL(L,Set) LEP°P

{compact objects}°? <~ X

o FP_. is the 2-category of Cauchy-complete finite-product categories
e ALG is the 2-category of algebraic categories and algebraic functors
o An algebraic category is an |.f.p. category which is Barr-exact and where the compact (regular)
projective objects are dense
o An algebraic functor is a functor that preserves small limits, filtered colimits, and regular
epimorphisms.
sifted colimits

e Clan-duality can be viewed as a refinement of GU-duality which allows to control the amount of
limit-preservation in the models

4 J. Adamek, J. Rosicky, and E.M. Vitale. Algebraic theories: a categorical introduction to general algebra.

Cambridge University Press, 2010.
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Clans

Definition
A clan is a small category 7 with terminal object 1, equipped with a class 7+ € mor(7) of
morphisms — called display maps and written — — such that

AT S [+
1. pullbacks of display maps along all maps exist and are display maps a - Lp

A—T
2. display maps are closed under composition, and

8. isomorphisms and terminal projections ' — 1 are display maps.

e Definition due to Taylor®, name due to Joyal® (‘a clan is a collection of families’)
e Relation to semantics of dependent type theory: display maps represent type families.
e Observation: clans have finite products (as pullbacks over 1).

5 P. Taylor. “Recursive domains, indexed category theory and polymorphism”. PhD thesis. University of

Cambridge, 1987, § 4.3.2.
6 A. Joyal. “Notes on clans and tribes". In: arXiv preprint arXiv:1710.10238 (2017).
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Examples

o Finite-product categories C can be viewed as clans with C; = {product projections}

o Finite-limit categories £ can be viewed as clans with £; = mor(L)
We call such clans FP-clans, and FL-clans, respectively.

e The syntactic category of every Cartmell-style generalized algebraic theory is a clan.
e Clan for categories:

I = {categories free on finite graphs}°® C Cat®’

KC+ = {functors induced by graph inclusions}°?

IC can be viewed as syntactic category of a generalized algebraic theory of categories:

F O sort

xy:0 F A(x,y) sort

x: 0 F id(x) : A(x, x)

xyz:0,f:Alx,y),g: Aly,z) F gof :A(x,z)

wxyz:0,e: Alw,x), f:A(x,y), g : Aly,z) b (gof)oe=go(foe): Alw,z)
xy:0,f€A(x,y) F lof=Ff=Ffol:A(x,y)

Vertices of a finite graph are object variables and edges are morphism variables in a context.
Graph inclusions are dual to context extensions.

© © 06 © © o
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Models

Definition

A model of a clan 7 is a functor A : 7 — Set which preserves 1 and pullbacks of display-maps.

The category Mod(7) C [T, Set] of models is I.f.p. and contains 7°P. Top
For FP-clans (C,C;) we have Mod(C,Cy) = FP(C, Set). z l

For FL-clans (L, L+) we have Mod(L, L) = FL(L, Set). K7
Mod(K, K;) = Cat. Mod(T) C [T,Set]

Observation

The same category of models may be represented by different clans.
For example, ordinary algebraic theories can be represented by FP-clans as well as FL-clans.
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The weak factorization system

e Would like duality between clans and their categories of models.

e Since the same |.f.p. category can be represented by different clans, we cannot hope to
reconstruct the clan from the models alone.

e Solution: equip the models with additional structure in form of a weak factorization system.

Definition

Let 7 be a clan. Define w.f.s. (£, F) on Mod(7) by
o 7 :=RLP({Z(p) | p € T+ }) class of full maps
o £ := LLP(F) class of extensions

l.e. (£, F) is cofibrantly generated by the image of 7;: under Z : 7°° — Mod(T).
e Call A< Mod(T) a 0-extension, if (0 — A) € £

e E.g. corepresentables Z(I) are 0-extensions since terminal projections [ — 1 are display maps.

e The same weak factorization system was also introduced by S. Henry in a HoTTEST talk’, see
also®.

7S. Henry, The language of a model category, HoTTEST seminar, Jan. 2020, https://youtu.be/7_X0gqbSX1fk
8 S. Henry. “Algebraic models of homotopy types and the homotopy hypothesis”. In: arXiv preprint
arXiv:1609.04622 (2016).
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https://youtu.be/7_X0qbSXlfk

Full maps
e f:A— Bin Mod(T) is full iff it has the RLP with respect to all Z(p) for display maps

p:A—T.
T -) —— A A(A) —2 B(n)
Z(p)=T(p,—)| ,/’/ lf Alp) 1B(p)
T(A,-) — B A(N) —— B(N

This is equivalent to display-naturality-squares being weak pullbacks.
Considering p : A — 1 we see that full maps are surjective and hence regular epis.

f;

A(D) —2 B(A) A(D) ————— B(4)
4 4 1 4
1 —— 1 A(D) x A(A) 225 B(A) x B(A)

For FL-clans, only isos are full (consider naturality square for diagonal A — A x A)
For FP-clans we have

full map = regular epimorphism

O-extension =  projective object
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Duality for clans

Theorem (F)

There is a bi-equivalence of 2-categories

{compact O-extensions}°” < X

T +— Mod(T)

Clan.. cAlg®®

e Clan. is the 2-category of clans and functors preserving 1, display maps and pullbacks of display
maps

e cAlg is the 2-category of clan-algebraic categories, i.e. categories X' equipped with a WFS
(€, F) of extensions and full maps, such that

1. X is locally small and cocomplete,

2. X has a small dense family of compact O-extensions (in particular X is I.f.p.),
3. (&€, F) is cofibrantly generated by maps between compact 0-extensions, and
4. X has full and effective quotients of componentwise-full equivalence relations.

e Both directions of the proof are non-trivial, details in the appendix
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Models in Higher Types



Models in higher types

Let S be the co-topos of spaces/types.

Let Cyvon be the finite-product theory of monoids, and let Ly, be the finite-limit theory of monoids.

Then
FP(Cwmon, Set) ~ FL(Lon, Set)
but FP(Cyon, S) and FL(Lwon, S) are different:
e FL(Lyon, S) is just the category of monoids
e FP(Cyion, S) is the oo-category ‘A..-algebras’, i.e. homotopy-coherent monoids.

Moral
By being ‘slimmer’, finite-product theories leave room for higher coherences when interpreted in
higher types.

This phenomenon was recently discussed under the name ‘animation’ in®, and earlier in'®

9 K. Cesnavicius and P. Scholze. “Purity for flat cohomology”. In: arXiv preprint arXiv:1912.10932 (2019).
10 D. Quillen. Homotopical algebra. Springer, 1967.
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Four clans for categories

Cat admits several clan-algebraic weak factorization systems:

e (&1, F1) is cofib. generated by {(0 — 1), (2 — 2) }
o (&, F7) is cofib. generated by {(0 — 1), (2 — 2), 2—=1)}
o (&3, F3) is cofib. generated by {(0 — 1), (2 — 2),(P — 2) }
o (&4, Fy) is cofib. generated by {(0 — 1),(2 — 2), (P — 2),(2 — 1)}

where P = (o =2 o).

The right classes are:

F1 = {full and surjective-on-objects functors}

F> = {full and bijective-on-objects functors}

F3 = {fully faithful and surjective-on-objects functors}
Fy = {isos}

Note that 73 is the class of trivial fibrations for the canonical model structure on Cat.
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Four clans for categories

These correspond to the following clans:

T1 = {free cats on fin. graphs}°? Tf = {graph inclusions}

T> = {free cats on fin. graphs}°? 7'; = {injective-on-edges maps}

Tz = {f.p. cats}°” 7, = {injective-on-objects functors}
Ta = {f.p. cats}°? 7.7 = {all functors}

Models in higher types:

oo-Mod(71) = {Segal spaces}

oo-Mod(72) = {Segal categories}

oo-Mod(73) = {pre-categories}
(Ta) =

oo-Mod(7;) = {discrete 1-categories}
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Syntax
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From clans to theories

e Duality between clans and clan-algebraic categories is a theory/model duality, where the
theories themselves are of a categorical nature.

comp(X)® <= X

T — Mod(T)

Clan,, cAlg®®

e There's also a correspondence between categorical theories (clans) and syntactic theories (GATS)
o The syntactic category of every GAT is a clan
o Moreover, (I think that) every clan is equivalent to the syntactic category of a GAT, giving rise to
an essentially surjective map as below.
Clan,. +———— cAlg®®
N
{GATs} ———— Clan

e This map can be enhanced to an equivalence by defining 1- and 2-cells between GATSs to be 1-
and 2-cells between the corresponding clans.
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Four GATs for categories

GAT for T1
o - O sort o x:0 F 1:A(x,x)
o xy:0 F A(x,y) sort e xyz:0,f:Ax,y),g8:Aly,z) b gof:A(x,2)

o wxyz:0,e:Alw,x), f:Ax,y),g:Aly,z) b (gof)oe=go(foe): Alw,z)
xy:0,f€Alx,y) F lof=f=1fol:A(x,y)

T> should have an equivalent syntactic category but more display maps, including the diagonal

do=(x,x):[x: 0] = [xy: O]

This is not a context projection, but we can make it isomorphic to one by introducing a new type
over [x y : O] and forcing it to be isomorphic to [x : O]
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Four GATs for categories

Additional azioms for T>

xy:0 F E(x,y) sort e xy:0,p:E(x,y) F x=y

x:0 F r:E(x,x) e xy:0,pq:E(x,y) F p=g

e In other words, we add an extensional equality type for O ‘by hand’

With this we can show the isomorphism of contexts [x : O] =[xy : O, p: E(x,y)]

Similarly, add extensional equality for morphisms to get 7:

Additional axioms for T3
e xy:0,fg:A(x,y) b F(f,g) sort exy:0,fg:Alx,y),p: F(f,g) F f=g
e xy:0,f:Alxy) b s:F(f,f) e xy:0,fg:Alxy),pq:F(f,g) - p=gq

e Adding both sets of axioms yields 7,
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Appendix — the proof
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Reconstructing the clan

Definition
Given a clan 7, let C C Mod(7) be the full subcategory on compact 0-extensions.

e C is a coclan with extensions as " co-display maps".
e 7 :7T° — Mod(T) factors through C since corepresentables Z(I") are compact and 0-extensions.

>
E -~ j

T ——— Mod(T)

e Have to show that E is a Morita equivalence, i.e. every compact 0-extension is a retract of a
corepresentable.
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The fat small object argument
Motivation: Subcategories of models for FP-theory C and clan 7.

reflexive coeqalizer

cep

{compact} {compact}

completion

uoins|dwod
Huwijod padsyy

uoia|dwod
Huwijod padeyly

_, {flat} <

{projective} Mod(C)C[C,Set]  {0-extension} ——— Mod(7)C [T, Set]

ex/wlex completion
e Flat algebras are filtered colimits of corepresentables, computed freely in the functor categories.

e For algebraic theories we have {projective} C {flat} since

o arbitrary free objects are filtered colimits of free objects over finite sets
o projective objects are retracts of free objects

e In the general clan case, {0-extension} C {flat} by the fat small object argument!®.

11
(2014).

M. Makkai, J. Rosicky, and L. Vokrinek. “On a fat small object argument”. In: Advances in Mathematics
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Reconstructing the clan

Theorem
The full inclusion E : 7°P < C exhibits C as Cauchy-completion of T°P, i.e. every compact
0-extension is a retract of a corepresentable.

Proof.

o let C € C.
e Since 0-extensions are flat, .]'C is filtered, thus C is a filtered colimit of corepresentables.

e Since C is compact, id¢ factors through a colimit inclusion map.
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Other direction — Idea of proof

e Show that the nerve/realization adjunction

c—L o x
Zl L L(A) = colim([A = C & x)
% N(X) = X(J(-), X)
Mod(C°)

is an equivalence.

By density the right adjoint /V is fully faithful, i.e. the counit is an isomorphism.

It remains to show that the unit of the adjunction is an isomorphism, i.e.
A(C) =5 2(C,colim([A = C 2 x)).

for all A € Mod(C°?) and C € C.
The functor X'(C, —) preserves filtered colimits and quotients of componentwise-full equivalence

relations, so it suffices to decompose colim( [A — C = X) in terms of these constructions.

This is essentially what we're doing in the following.
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Jointly full cones

e Let D : 7 — X be a diagram in an adequate category.

e A cone (A, ¢) over D is called jointly full, if for every cone (C,~), extension e : B — C and map
g : B — A constituting a cone morphism g : (B, o e) — (A, ¢), there existsa map h: C — A
such that

k

h -

e bi

N
g
O <—

-
-
-
.
~
%

commutes for all / € 7.
e Observation: The cone (A, ¢) is jointly full iff the canonical map to the limit is full.
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Definition

A nice diagram in an adequate category X is a truncated simplicial diagram

do ——7

% dg ——>
A2 dl%o A1 #SO*AO
7d2%

where
1. Ag, A1, and A, are 0O-extensions,
2. the maps dy, d; : Ay — Ag are full,

A2 — A1
3. in the square | ¢ |d, the span constitutes a jointly full diagram over the cospan,

Al LAO

di
A1 H AO
4. there exists a symmetry map | \ 14, making the triangles commute, and

Ao%Al

5. there exists a O-extension A and full maps 7, g : A — A; constituting a jointly full cone over the

diagram
Al 4 A
dol >< L -
Ag @ Ay
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Nice diagrams

Lemma

d; r
For any nice diagram, the pairing Ay M Ap X Ao admits a decomposition Ay — R % Ao X Ao

into a full map and a monomorphism, and (ry, 1) is a componentwise-full equivalence relation.

Lemma

Assume X is adequate and F : X — Set preserves finite limits and sends full maps to surjections.
Then for every nice diagram, F preserves coequalizers of the arrows dy, d; : A1 — Ap.

Lemma

The restriction L' of L in the nerve/realization adjunction

{0-ext}
\;
Mod(C°P)

to 0-extensions is fully faithful and preserves full maps and nice diagrams.
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Nice diagrams

Lemma

For every object A of an adequate category X there exists a nice diagram

- dy

2T %L, cdy——
Ay -di —— A %507/40

AT Ta 2%

*dQ% !

such that A is the coequalizer of dy, dy : A1 — Ap.

Proof.

e Ay is given by covering A by a O-extension, i.e. factoring 0 — A as 0 — Ay S A

0— A — R = A

e A is given by covering the kernel of Ay — A by a 0-extension n] @ le
Ag = A
00— Ay —» ¢ — A
e A is given by covering the following pullback: 17 i
AL A
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The proof

Proof of the theorem.

Let C C X be the co-clan of compact 0-extensions. It remains to show that

AC = X(C, LA).

for all A € Mod(C°?) and C € C. Let A, be a nice diagram with coequalizer A. We have

X(C,LA) = X(C, L(coeq(A1 =2 Ap)))
=~ X(C,coeq(LA; = LA))
= coeq(X(C, LA1) =2 X(C, LAy))
= coeq(A1C = ApC)
& coeq(Mod(ZC, A1) = Mod(ZC, Ay))
=~ Mod(ZC, coeq(A; = Ap))
>~ Mod(ZC, A))
= AC

since A = coeq(A1 =2 Ao)
since L preserves colimits

since X(C, —) preserves coeqs of nice diags
since LA; = colim([A; — C — X) filtered
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Thanks for your attention!
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