Type-Theoretic Signatures for Algebraic Theories and Inductive Types

András Kovács¹

j.w.w. Thorsten Altenkirch, Paolo Capriotti, Ambrus Kaposi, Ambroise Lafont, Christian Sattler

¹Eötvös Loránd University

21 May 2022, EuroProofNet WG6 meeting, Stockholm

1 Introduction

2 High-Level Syntax

3 Lower-Level Syntax and Semantics

4 Term Algebras

1 Introduction

High-Level Syntax

3 Lower-Level Syntax and Semantics

4 Term Algebras

"Abstract" algebraic signatures:

- Finite product/limit categories, contextual cats, representable map cats.
- Far from proof assistant implementations.

Sketches:

• Still far from implementations.

"Syntactic" signatures:

- CIC signatures, GATs.
- Formally tedious and poorly structured.

A **theory of signatures (ToS)** is a type theory where algebraic signatures can be defined.

The semantics of signatures is given by a model of a ToS.

Goals

- 1 Adequacy in implementation:
 - Exact computation of induction principles and β -rules.
 - Low encoding overheads.
 - Amenable to elaboration, perhaps also metaprogramming.
- 2 The theory of signatures is itself algebraic (perhaps even self-describing).
- 3 Semantics in categories of algebras.

Introduction

2 High-Level Syntax

3 Lower-Level Syntax and Semantics

4 Term Algebras

We work in a type theory with **four universes**:

- 1 Set: universe of metatheoretic types (in the sense of 2LTT).
- 2 Sig: universe of signatures.
- **3** Sort: universe of "algebraic sorts".
- **4** \mathbb{C} : the category where semantic algebras live (internally).

Cumulative hierarchies:

$$\begin{array}{l} \mathsf{Sort} \subseteq \mathsf{Sig} \subseteq \mathsf{Set} \\ \mathbb{C} \subseteq \mathsf{Set} \end{array}$$

Restriction on elimination:

- From \mathbb{C} , only eliminate to \mathbb{C} .
- From Sig and Sort, only eliminate to Sig.

Framework - type formers

- Sort \subseteq Sig \subseteq Set
- $\mathbb{C} \subseteq \mathsf{Set}$
- From C, only eliminate to C.
- From Sig and Sort, only eliminate to Sig.

General Assumptions

- Set is closed under ETT type formers.
- Sig is closed under \top and Σ .

By varying type formers in Sig and Sort, we can describe numerous classes of inductive signatures.

We look at several of these in the following.

Closed inductive-inductive signatures

- Sort \subseteq Sig \subseteq Set
- $\mathbb{C} \subseteq \mathsf{Set}$
- From \mathbb{C} , only eliminate to \mathbb{C} .
- From Sig and Sort, only eliminate to Sig.

Close Sig under dependent functions with Sort domains:

$$\frac{A:\mathsf{Sort}\qquad B:A\to\mathsf{Sig}}{(a:A)\to B\,a:\mathsf{Sig}}$$

 $(+ \lambda, \text{ application})$ Remark: $A \rightarrow \text{Sig}$ above is a metatheoretic function type in Set

 $\begin{array}{ll} \mathsf{ConTySig}:\mathsf{Sig} \\ \mathsf{ConTySig}:=& (\mathsf{Con}:\mathsf{Sort})\times(\mathsf{Ty}:\mathsf{Con}\to\mathsf{Sort}) \\ & \times(-\triangleright-:(\Gamma:\mathsf{Con})\to\mathsf{Ty}\,\Gamma\to\mathsf{Con})\times... \end{array}$

Close Sig under dependent functions with $\ensuremath{\mathbb{C}}$ domains:

$$egin{array}{cc} A:\mathbb{C} & B:A
ightarrow \mathsf{Sig} \ \hline (a:A)
ightarrow Ba:\mathsf{Sig} \end{array}$$

 $(+ \lambda, \text{ application})$

 $\mathsf{ListSig} : \mathbb{C} \to \mathsf{Sig}$ $\mathsf{ListSig} A := (\mathsf{List} : \mathsf{Sort}) \times (\mathsf{nil} : \mathsf{List}) \times (\mathsf{cons} : A \to \mathsf{List} \to \mathsf{List})$

Possible simple ListSig semantics:

A function sending each object A of a finite product category \mathbb{C} to the category of A-list algebras that are internal to \mathbb{C} .

Close Sig under extensional equality:

$$\frac{A: \text{Sig} \quad x: A \quad y: A}{x = y: \text{Sig}}$$

(+ refl, equality reflection)

QuotientSig : $(A : \mathbb{C}) \to (R : A \to A \to \mathbb{C}) \to Sig$ QuotientSig $AR := (A/R : Sort) \times (|-| : A \to A/R) \times (quot : R \times y \to |x| = |y|)$

Infinitary quotient inductive-inductive signatures

Drop extensional equality from Sig, but add it to Sort instead.¹

Also close Sort under dependent functions with $\ensuremath{\mathbb{C}}$ domains:

 $\frac{A:\mathbb{C} \qquad B:A \to \mathsf{Sort}}{(x:A) \to B:\mathsf{Sort}}$

 $(+ \lambda, \text{ application})$

$$WSig : (A : \mathbb{C}) \to (B : A \to \mathbb{C}) \to Sig$$
$$WSig AB := (W : Sort) \times (sup : (a : A) \to (B a \to W) \to W)$$

At this point, we can specify every QII type from the HoTT book.

E.g. Cauchy reals, surreals, the cumulative hierarchy of sets.

¹There's a semantic issue in mixing extensional Sig equality with infinitary branching.

We close Sig and Sort under intensional identity.

$$\begin{aligned} & \text{TorusSig} : \text{Sig} \\ & \text{TorusSig} := \quad (\mathsf{T}^2 : \text{Sort}) \times (\mathsf{b} : \mathsf{T}^2) \times (\mathsf{p} : \mathsf{b} = \mathsf{b}) \times (\mathsf{q} : \mathsf{b} = \mathsf{b}) \\ & \times (\mathsf{t} : \mathsf{p} \boldsymbol{\cdot} \mathsf{q} = \mathsf{q} \boldsymbol{\cdot} \mathsf{p}) \end{aligned}$$

Path composition $- \cdot -$ is definable from J.

closed $A : Sig \implies$ a finitely complete category of algebras closed $f : A \rightarrow B$ with $A, B : Sig \implies$ finitely continuous functor

We have a simple directed type theory.

We can do more than just write signatures:

- The erasure map NatSig → ListSig which forgets list elements is an ornament (see McBride, Dagand).
- Various model constructions of type theories can be defined as Sig functions. Most *syntactic models* can be rephrased in this way.
- Sig equivalences yield isomorphisms or equivalences of categories (depending on the exact semantics).

Introduction

Ø High-Level Syntax

3 Lower-Level Syntax and Semantics

4 Term Algebras

The high-level syntax is a **2LTT whose inner level is a theory of signatures**.

We compile values in Sig and Sort to syntax in a formal ToS, using the "standard" presheaf model.

The ToS syntax is an initial structured cwf:

- Types as Ty Γ, terms as Tm Γ A.
- Tarski-style universe Sort : Ty Γ with El : Tm Γ Sort \rightarrow Ty Γ .
- A : Sig is compiled to a type.
- A : Sort is compiled to a term with type Sort.
- Ty and Sort are closed under previous Sig and Sort type formers.

Setup & overview

The ToS syntax lives in **yet another 2LTT**, where \mathbb{C} is the inner level. We have Tarski-style \mathbb{C} : Set and $El_{\mathbb{C}} : \mathbb{C} \to Set$.

ToS type formers may refer to this $\mathbb{C},$ e.g.:

$$\Pi_{\mathbb{C} \operatorname{\mathsf{Ty}}} : (A : \mathbb{C}) \to (\mathsf{El}_{\mathbb{C}} A \to \mathsf{Ty} \, \Gamma) \to \mathsf{Ty} \, \Gamma$$

 $\Pi_{\mathbb{C}\operatorname{Sort}}:(A:\mathbb{C})\to(\mathsf{El}_{\mathbb{C}}\operatorname{A}\to\mathsf{Tm}\,\Gamma\operatorname{Sort})\to\mathsf{Tm}\,\Gamma\operatorname{Sort}$

We consider three ToS-es and their semantics.

ToS	semantics of types
finitary QII	displayed cwf
infinitary QII	cwf isofibration
higher inductive-inductive	complete inner Reedy fibration ²

²TYPES 2020, Capriotti & Sattler: *Higher categories of algebras for higher inductive definitions.*

Theory of signatures

- Ty is closed under $\Sigma, \ \top,$ extensional = –, $\mathbb{C}\text{-small}$ products, Sort-small products
- Sort is closed under no type formers

Design choice: semantic contexts are *cwfs* + extra structure (not categories!)

The notion of **induction** can be directly defined in a cwf \mathbb{C} :

Inductive : $Obj_{\mathbb{C}} \to Set$ Inductive $\Gamma := (A : Ty_{\mathbb{C}} \Gamma) \to Tm_{\mathbb{C}} \Gamma A$

"An algebra Γ is inductive if every displayed algebra over it has a section."

Definition

Finite limit cwf (flcwf): cwf + Σ + extensional identity + constant families ("democracy")

Clairambault & Dybjer: flcwfs are (bi)equivalent to finitely complete categories.

We model ToS contexts as flcwfs.

Theorem

In any flcwf, induction is equivalent to initiality.

Finitary QII semantics - summary

We assume that $\mathbb C$ is closed under $\top,\,\Sigma$ and extensional identity.

(We can model \mathbb{C} using any finitely complete category)

contexts:	flcwfs
types:	displayed flcwfs
substitutions:	strictly structure-preserving flcwf morphisms
terms:	strictly structure-preserving flcwf sections
Sort:	the flcwf of types in ${\mathbb C}$
EI:	discrete displayed flcwf formation
-=-:	pointwise equality of strict flcwf sections
$\Pi_{\mathbb{C} \operatorname{Ty}}$	\mathbb{C} -small products
Π _{Sort Ty}	products with discrete index domains

Theory of signatures

- Ty is closed under Σ , \top , \mathbb{C} -small products, Sort-small products.
- Sort is closed under Σ , \top , \mathbb{C} -small products, extensional -=-.

The previous semantics doesn't work!

The Sort type formers (e.g. \top : Tm Γ Sort) don't preserve limits strictly, only up to isos.

We switch to weak limit-preservation everywhere. This is technically more complicated.

Infinitary QII semantics - summary

We assume that $\mathbb C$ is closed under $\top,$ $\Sigma,$ extensional identity and $\Pi.$

(We can model ${\mathbb C}$ using any LCCC)

contexts:	flcwfs
types:	flcwfs isofibrations
substitutions:	weak cwf morphisms
terms:	weak cfw sections
Sort:	the flcwf of types in ${\mathbb C}$
EI:	discrete flcwf isofibration formation
-=-:	pointwise equality of weak sections
$\Pi_{\mathbb{C}T y}$	$\mathbb C\text{-small indexed products}$
$\Pi_{Sort Ty}$	products with discrete index domains
$\Pi_{\mathbb{C}Sort}$	internal $\mathbb C$ -small products

HII semantics (Capriotti & Sattler)

Theory of signatures

- Ty is closed under Σ, ⊤, ℂ-small products, Sort-small products, intensional −=−.
- Sort is closed under Σ , \top , \mathbb{C} -small products, intensional -=-.

We assume that \mathbb{C} models HoTT (we work in the "original" 2LTT).

contexts:	marked semisimplicial types
types:	complete inner Reedy fibrations
Sort:	universe of left fibrations

- This also yields a **structure identity principle** for HII theories.
- In an extra step we can add finite limits to categories of algebras.
- In yet another step we can show equivalence of induction and initiality.

Introduction

Ø High-Level Syntax

3 Lower-Level Syntax and Semantics

4 Term Algebras

We'd like sufficient conditions on $\mathbb C$ to have initial algebras for each signature.

In other words: construct initial algebras from simple "type formers".

Idea:

- \blacksquare If $\mathbb C$ has an initial algebra for a ToS, we can use terms and types to build initial algs.
- 2 We construct the initial ToS model from simpler type formers.

Currently this works only for some ToS-es & semantics.

Term algebras for (in)finitary QII signatures

Assumptions

- \mathbb{C} is a model of ETT.
- \mathbb{C} has an initial ToS model.
- We fix a syntactic ToS context Ω (as a signature).

Each inductive sort in Ω is modeled as a set of terms.

For example, if $\Omega = \mathsf{NatSig}$:

 $\mathsf{Nat} := \mathsf{Tm} \left(\bullet \triangleright \left(N : \mathsf{Sort} \right) \triangleright \left(z : \mathsf{El} \, N \right) \triangleright \left(s : N \to \mathsf{El} \, N \right) \right) \left(\mathsf{El} \, N \right)$

Term algebras for (in)finitary QII signatures

- An internal algebra of Ω in a ToS model is a morphism from the empty context to Ω.
- ② By induction on ToS we show that any internal algebra yields an Ω-algebra in C (the term algebra).
- In the slice model ToS/Ω the identity morphism from Ω to Ω gets us an internal algebra, hence also a term algebra.
- ④ By another induction on ToS, we can directly show that the term algebra is initial.

Theorem

If a model of ETT supports syntax for (in)finitary QII signatures, it supports all (in)finitary QII types.

The remaining job is construct ToS syntaxes from simple type formers.

This is the **initiality construction** popularized by Voevodsky.

Results so far:

- ToS for **finitary inductive-inductive signatures** is constructible from just **W-types**.
- ToS for closed QII signatures was almost³ constructed by Brunerie and De Boer in Agda from propositional extensionality, inductive types and simple quotients by relations.

Open problems:

- Fiore, Pitts, Steenkamp⁴: a class of infinitary QITs is constructible from the WISC axiom. Can we extend this to infinitary QIITs?
- The case for HIITs is open.

 $^{^{3}\}mbox{The constructed theory is not exactly the same, but it can be plausibly adjusted to our use case.$

⁴arXiv:2101.02994: *Quotients, inductive types, and quotient inductive types*