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In constructive logic

Nelson, Markov: objected to weak intuitionistic negation

 A :“ Añ K

 pA^ Bq does not imply  A_ B

 
`

@xφpxq
˘

does not imply Dx φpxq

Constructive logic with strong negation p q was formulated.



In constructive mathematics

Brouwer, Bishop: use the weak negation, but in many cases
developed a positive approach to negatively defined concepts:

denial inequality – positive inequality, apartness relation

complement of a subset – strong complement of a subset

disjoint subsets – complemented subsets

non-empty set – inhabited set

Abstract inequalities rely on  (Bishop and Bridges 1985)

f-inequalities are completely positively defined (Bishop 1967).



Shulman: Affine logic for CM, 2021

He showed that numerous concepts of CM arise automatically from
an “antithesis” translation of affine logic into intuitionisitic logic
(IL) via a Chu/Dialectica construction.



What we do is similar, but

we work within BISH, we define a strong negation and we use
Rasiowa’s strong implication.



Why using a strong, positive _, D together with a weak
and negative  only?

Strong: _, D, , ñ

Weak: _, D, ,ñ

Common: ^,@.



Formulas in BISH

Prime formulas:

s “N t, s ‰N t, where s, t are elements of N.

Complex formulas:

If A,B are formulas, then A_B,A^B,Añ B are formulas.

If S is a set and φpxq is a formula, for every variable x of set S ,
then DxPS

`

φpxq
˘

and @xPS
`

φpxq
˘

are formulas.



Weak negation in BISH

 A :“ Añ K,

K :“ 0 “N 1

J :“ 0 ‰N 1



Strong negation in BISH

 
`

s “N t
˘

:“ s ‰N t &  
`

s ‰N t
˘

:“ s “N t.

 pA_Bq :“  A ^  B

 pA^Bq :“  A _  B

 pAñ Bq :“ A ^  B

 

ˆ

DxPSφpxq

˙

:“ @xPS
`

 φpxq
˘

 

ˆ

@xPSφpxq

˙

:“ DxPS
`

 φpxq
˘



Proposition

Let A be a formula of BISH.

(i)   Añ A.

(ii)  Añ  A.

(iii) A ^  Añ K.

  A :“  pAñ 0 “N 1q :“ A ^ 0 ‰N 1 ô A



The strong inequality of a defined set pX ,“X q is defined by

x ‰X y :“  
`

x “X y
˘

.

We call pX ,“X ,‰X q a set with inequality.

We call pX ,“X , ‰X q a strong set.

 
`

x ‰X y
˘

ñ x “X y

Richman: to define an inequality for every set would be
“cumbersome and easily forgotten”.

In most cases, but not all, the sets with inequality considered are
strong!



The strong inequality of R

x “R y :ô @nPN`

ˆ

|xn ´ yn| ď
2

n

˙

x ‰Ry :ô DnPN`

ˆ

 

ˆ

|xn ´ yn| ď
2

n

˙˙

ô DnPN`

ˆ

|xn ´ yn| ą
2

n

˙

ô: |x ´ y | ą 0

ô: x ‰R y



The strong inequality of the product set

px , yq ‰XˆY px
1, y 1q :“  

“

px , yq “XˆY px
1, y 1q

‰

:“  
“

x “X x 1 ^ y “Y y 1
‰

:“ x ‰X x
1 _ y ‰Y y

1.

If ‰X and ‰Y are extensional, then ‰XˆY is extensional.



The strong inequality of the function set

f ‰FpX ,Y qg :“  
“

f “FpX ,Y q g
‰

:“  
“

@xPX
`

f pxq “Y gpxq
˘‰

:“ DxPX 
“

f pxq “Y gpxq
‰

:“ DxPX
“

f pxq ‰Y gpxq
‰

.

If ‰Y is extensional, then ‰FpX ,Y q is extensional.



Strong inequality need not be an apartness relation

pi , xq “ř

iPI λ0piq
pj , yq :ô i “I j ^ λijpxq “λ0pjq y

:ô i “I j ^ ri “I j ñ λijpxq “λ0pjq y s

pi , xq ‰ř

iPI λ0piq
pj , yq :ô i ‰I j _

`

i “I j ^ λijpxq ‰λ0pjqy
˘

Even if ‰I and ‰λ0pjq are apartness relations, I needs to be discrete
to get an apartness on the Sigma-set of the family of sets over I .



Rasiowa’s strong implication in BISH

AñB :“ pAñ Bq^p B ñ  Aq



Functions between sets

An a.r. f : pX ,“X q Ñ pY ,“Y q is a function, if

x “X x 1 ñ f pxq “Y f px 1q.

A function f : pX ,“X ,‰X q Ñ pY ,“Y ,‰Y q is strongly extensional,
if

f pxq ‰Y f px 1q ñ x ‰X x 1.

A function f : pX ,“X , ‰X q Ñ pY ,“Y , ‰Y q is strong, if

f pxq ‰Y f px
1q ñ x ‰X x

1.

Hence an a.r. f : pX ,“X , ‰X q Ñ pY ,“Y , ‰Y q is a strong
function, if

x “X x 1 ñf pxq “Y f px 1q.



In BISH we cannot accept that all functions are strong

The following are equivalent:

(i) Markov’s principle.

(ii) Every function f : pR,“R, ‰Rq Ñ pR,“R, ‰Rq is strong.

(iii)  px “R 0q ñ  px “R 0q.

(iv)  px ď yq ñ x ą y .

Hence, in BISH we cannot accept:

pAñ Bq ñ p B ñ  Aq,

 Añ  A,

p  Aq ñ A,

as  px ą yq ô x ď y .

You need IL to show that a constant function is strong!



The category of strong sets and strong functions

Set : category of sets and functions

Setse : category of sets with inequality and s.e. functions

Set : category of strong sets and strong functions

Constructive measure theory within Setse



The strong complement of a subset

If pX ,“X , ‰X q is a strong set, and pA, iAq Ď X , then for every
x P A let the pseudo-membership

x P A ” DaPA
`

iApaq “X x
˘

.

hence,

x R A :“  
“

x P A
‰

:“  
“

DaPA
`

iApaq “X x
˘‰

:“ @aPA 
`

iApaq “X x
˘

:“ @aPApiApaq ‰X xq.

If ‰X is extensional, the strong complement of A is defined by

A‰ :“ tx P X | x R Au.

The proof of
?

2 R Q more informative than the proof of
?

2 R Q.



Ppxq extensional property on pX ,“X , ‰X q.

XP :“ tx P X | Ppxqu

x P XP :“ Ppxq

XP is empty :“  DxPX px P XPq

:“  DxPXPpxq

:“ @xPX Ppxq.



Complemented subsets

If pA, iXA q, pB, i
X
B q Ď pX ,“X , ‰X q, then

AX B :“
 

pa, bq P Aˆ B | iXA paq “X iXB pbq
(

.

AX B is empty :“ @pa,bqPAˆB
`

 iXA paq “X iXB pbq
˘

:“ @pa,bqPAˆB
`

iXA paq ‰X i
X
B pbq

˘

ô @aPA@bPB
`

iXA paq ‰X i
X
B pbq

˘

.



Strong uniqueness

If pX ,“X , ‰X q, let

D!xPXφpxq :“ φpx0q ^ @xPX
`

x ‰X x0 ñ  φpxq
˘



Tight concepts

 A is tight if and only if

p  Aq ñ A

If C Ď X , then C‰ is tight, if

`

C‰
˘1

Ď C

If C is a closed and located subset of a metric space, then C‰ is
tight (without CC).



Conclusions/Questions

§  is a heuristic method of defining positively various concepts
of CM.

§ The use of  forces us to do better and more informative
proofs.

§ It permits the distinction between strong, weak and tight
concepts.

§ CM is mathematics with IL. More distinctions need to be kept:
no choice, predicativity, positivity.

§ Is an intuitionistic proof using  fully constructive (Griss)?

§ MLTT and HoTT claim that they can serve as a foundation for
all mathematics (constructive and classical). As there is no
canonical inequality associated to the equality type a “A b, can
intensional MLTT (and HoTT) capture strong negation?
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