
The Verifier-Falsifier Games with Restrictions on
Computational Complexity of Strategies

WT-6 Stockholm Workshop 2022

Sergei Soloviev, IRIT, France

21 May 2022

1

Verifier-Falsifier Games and Game Semantics

Orginally, the Game Theoretic Semantics (GTS) was developed
as a variant of verification procedure for existing logical semantics.
This semantics could be classical, constructive etc.
References related to this talk: Thierry Coquand (1995), Denis
Bonnay (2004), Boyer and Sandu (2012), Odintsov, Speranski,
Shevchenko (2018).
In this talk I will first outline the bases of the game theoretic
approach. I will also consider briefly some variants of this
approach and problems studied in the literature.
I plan to explore (or, rather, to start the exploration) of how the
GTS may be modified, or even “perversed”, if there are
significant differences in the computational power of players.

2

Verifier-Falsifier Games and Game Semantics

Basic definition
Semantical games are played with first-order sentences in a given
model M which interprets the function and relation symbols of the
relevant formal language.
The truth (satisfaction) in M of an atomic formula is supposed to
be fixed.
The two players, Verifier and Falsifier play to establish the truth
(falsity) of a given (compound) sentence in M.
∨-move (Verifier), ∧-move (Falsifier) - choice of disjunct (conjunct).
∃-move (Verifier), ∀-move (Falsifier) - choice of individual ∈ M
Remark.Verfier and Falsifier sometimes are called ∃loise and
∀belard.
The players move along the syntactic tree of a given formula A.
The play is always finite since an atomic subformula will be
reached after a finite number of moves.

3

Verifier-Falsifier Games and Game Semantics

If A is true, the play is a win for Verifier; if false, it is a win for
Falsifier.
Truth of a formula is equated with existence of a winning strategy
for the Verifier, that is, a set of instructions which give Verifier a
win no matter what Falsifier does. Falsity is defined analogously.

A standard example.
Consider A = ∃x0∀x1.x0 ≤ x1.
Consider the game played on the standard model N.
The collection of strategies of Verifier consists of individuals
(natural numbers).
One, 0, is winning: for any number n selected by Falsifier 0 ≤ n.

4

Verifier-Falsifier Games and Game Semantics

In Hintikka’s semantical games, the strategies of Verifier are
Skolem functions, and those of Falsifier are Kreisel’s
counter-examples. (Boyer/Sandu)
The works that I cited consider GTS for classical logic, so
implication is not treated, negation can be moved to atomic
formulas etc. Since the aim is exploration of influence of
asymmetry between players it is not a principal point.
There are of course other works concerning GTS for other logics,
including intuitionistic/constructive.
Also, exploring connections with realizability:
S. Odintsov, S. Speranski, I. Shevchenko. Hintikka’s
Independence-Friendly Logic Meets Nelson’s Realizability. Studia
Logica, 2018.

5

Verifier-Falsifier Games and Game Semantics

The authors of GTS understood the drawbacks of the definition
outlined above. Most basic: the proof in a first-order system is an
effective notion, whereas truth is not. Hintikka (1996):
The demand of playabilty might seem to imply that the set of
the initial Verifier’s strategies must be restricted. For it does
not seem to make any sense to think of any actual player as
following nonconstructive (nonrecursive) strategy.
A possible solution: restrict semantical games to the games
played only on recursive structures with recursive strategies.
CGTS′-truth (computable game-theoretic semantics truth): a
sentence φ is GTCS-true on recursive model M exactly when
there is a computable winning strategy for Verifier in the
semantic game played with φ on M (Boyer/Sandu)
With free variables this is relativized to an assignment.

6

Verifier-Falsifier Games and Game Semantics

Boyer and Sandu then consider the case when the structure M is
N, since N is the only recursive structure of PA (up to
isomorphism), by Tennenbaum’s theorem.
So they consider effective winning strategies for Verifier in
semantic games played on N.
Example. On the standard structure N the Verifier has a
computable winning strategy for the sentence ∀x0∃x1.(x0 ≥ x1) iff
there is a recursive function f : N → N such that for all n ∈ N,
n ≥ f (n). That is, N| =CGTS ∀x0∃x1.(x0 ≥ x1)

More generally, for any binary predicate F (x , y), N| =CGTS
∀x∃!y .F (x , y) ⇐⇒ F (x , y) defines a total recursive function.

7

Verifier-Falsifier Games and Game Semantics

Two questions:
1 Do proofs in PA yeld CGTS-truth:

PA ` φ⇒ PA| =CGTS φ?

Here Γ| =CGTS φ is defined by the condition that in all recursive
models M: if for all ψ ∈ Γ, M| =CGTS ψ, then M| =CGTS φ.

2 Can the CGTS-truth of a sentence be always interpreted as given
by a proof?

PA| =CGTS φ⇒ PA ` φ?

And, thus PA| =CGTS φ ⇐⇒ PA ` φ?

The answer to both questions is negative.

8

Verifier-Falsifier Games and Game Semantics

To (1) a standard counterexample is given by the sentence

∀x1∀x2∃y∀z.(Halt(x1, x2, y) ∨ ¬Halt(x1, x2, z)).

Here H(x1, x2, z) is the predicate that represents the “halting” of
the Turing mashine encoded by x1 on x2 after z steps. There is no
recursive winning strategy for Verifier on N since othewise the
halting problem would be decidable.
But the sentence is provable in PA.

9

Verifier-Falsifier Games and Game Semantics

The answer to (2) is negative as well.
Consider φ of the form ∀x∃!y .F (x , y).

N| =CGTS ∀x∃!y .F (x , y) ⇐⇒ F (x , y)

defines a total recursive function.
Taking into account the Tennenbaum’s theorem we would have

PA ` ∀x∃!y .F (x , y) ⇐⇒ F (x , y)

but then the set of total recursive functions would be recursively
enumerable.

10

The Games with Backward Moves

To obtain a positive answer at least to (1) several authors modify
the notion of semantic game.
Coquand (1995), Krivine (2003), Bonnay (2004).
They admit an important asymmetry: one of the players (in their
work the Verifier) is permitted to go back and change a move.
They introduce the games with backward moves.

11

The Games with Backward Moves

The Main Differences:
Whenever its turn to move, Verifier can return to any one of its
earlier decision points and remake the choice; the play then
continues as in the standard game -
even if the false atomic formula is reached (win for Falsifier in the
standard game) return to one of the earlier decision points for
Verifier is permitted (and the play then continues as in the
standard game)
Verifier wins a play if it is finite and it ends with a true atomic
formula, otherwise Falsifier wins (in case of infinite play that is now
possible as well).
Now both players may have more strategies that in standard
games. It has important consequences.

12

The Games with Backward Moves

Example (Coquand). Consider the backward game for
(∃m∀x .x ≤ m) ∨ (∀n∃y .n < y) played on N. The Verifier has the
following winning strategy (not in the standard game):
V. chooses the right disjunct;
F. chooses a value n0 for n;
V. goes back, chooses the left disjunct and n0 for m
F. chooses some x0 for x .
Now, if x0 ≤ n0 = m, then V. wins.
Otherwise, if x0 > n0 = m, V. goes back to its choice of disjunct,
and chooses instead to continue on the basis of the right dijunct
again after the choice made by F.,
that is, where n = n0, and V. may choose y = x0 and win the play.

13

The Games with Backward Moves

For the formula

∀x1∀x2∃y∀z.(Halt(x1, x2, y) ∨ ¬Halt(x1, x2, z))

the Verifier has now a winning strategy as well!
In the beginning F chooses x1 = m1 an x2 = m2;
V has to choose some y = n;
now it is F’s turn, it has to choose z = p;
V may choose a disjunct; but it looks first what the value of
disjuncts is: if Halt(m1,m2,n) is true it chooses this disjunct;
if it is false and ¬Halt(m1,m2,p) is false then Halt(m1,m2,p) is
true; V goes backwards, chooses y = p and (after any choice of
z = p′ by F) chooses the left disjunct. And wins.

14

The Games with Backward Moves

There are two theorems proved by Denis Bonnay.
The first one speaks about any strategies, not only computable.
Theorem 1. For any first order formula φ, structure M and
assignment g, Verifier (Falsifier) has a winning strategy in the
standard semantical game G(M, φ,g) iff it has a winning strategy
in the corresponding game with backward moves.
Theorem 2. If M is a recursive model, π is a proof (in classical
logic) of Γ ` φ and recursive winning strategies {fi}i∈Γ for Verifier
are given for each game G∗(M, φi , ∅) with backward moves, with
φi ∈ Γ, then π yelds a recursive winning strategy for Verifier in
G∗(M, φ, ∅).

15

The Games with Backward Moves

So, Bonnay’s theorem 2 says that if φ is provable classically,
then there is a winning strategy for Verifier. This gives a
positive answer (for games with backward moves) to the first
question mentioned above.
The answer to the second question, whether the existence of
winning strategy for V implies provability, remains negative.
The price of this one positive answer is introduction of an
important asymmetry between players.
The asymmetry is not in computation power, but it so to say
“opens the way”.
And the fact that the answer to (2) remains negative makes us to
ask, what strange formulas may be “proved by winning”?

16

Computational Asymmetry

Example. Let φ = ∃x∀y .(y ≤ A(x)). Let here A be the
Ackermann’s function, and let the class of strategies of Falsifier
be limited to primitive recursive functions.
The strategies of Verifier are just natural numbers (values of x). If
f is some strategy of Falsifier, its answer is f (x). The formula is
false on N, but there is no winning strategy for Falsifier because A
grows faster than any PR function.
The games themselves are yet symmetric (no backward moves),
we can consider ψ = ∀x∃y .(A(x) < y) (which is true), and here
the Verifier will have no winning strategy if its strategies are PR.
In fact, both don’t have winning strategy in my example. So, it is
not yet an example when the more powerful player can completely
“perverse” the semantics. However:

17

Computational Asymmetry

Assume that V can compute any general recursive function and
knows (and can compute) a universal function U(x , y) for the
strategies f of F, i.e., every f = U(k ,−) for some k .
Assume that if V knows the strategy of F it can win. That is, V can
compute another function W (x , y) such that vk = W (k ,−) wins
against fk = U(k ,−).
Here x ∈ N but we may assume that y ∈ N are the codes of
partial plays (including backward moves).
Remark. In our work Falsifier can (in its strategy) take into
account the backward moves. But is does not change main result.

18

Computational Asymmetry

Theorem. In the conditions listed above the Verifier has a
recursive strategy that wins against any strategy of the Falsifier.
Proof. The winning strategy of Verifier is constructed using
“testing of hyptheses”. Initial hypothesis is that F uses the strategy
f0 = U(0,−). When the current hypothesis has number k (that the
strategy of F is fk = U(k ,−)), V plays using his strategy
vk = W (k ,−) while the moves of F are as predicted. If they are
not then V returns to the initial position and passes from k -th
hypothesis to the k + 1-th.
Remark. They can arrive to a position that is losing to V in the
standard formulation of the game, but in the game with backwards
moves V can backtrack. So this case is also included in the
description of the strategy of V.
V wins either when it arrives to the correct hypothesis or before.
So the problem of “true” number of strategy remains indecidable.

19

Computational Asymmetry

Example with Ackermann function (continued)
If the strategies of Falsifier do not take into account the backward
moves, the application of the theorem is very simple.
A strategy f of F is a PR function f : N → N.
Let U(k , y) be a universal function for PR functions.
The function W (k) is µx .(U(k , x) ≤ A(x)) (the second argument
is absent because we need only the intial value).
It is general recursive (by classical results of Kleene).
The winning strategy for V backtracks if f (W (k)) > A(W (k)) and
chooses W (k + 1).
Remark. Other solutions (not based on the theorem) are possible
in this example. Say, V can just take the values 0,1, ... for x
(backtrack and choose k + 1 if f (k) > A(k)).

20

Computational Asymmetry

Example with Ackermann function (continued)
Let the strategies of Falsifier do take into account the backward
moves. In this example there is only one backward move, so we
can represent a partial play just by sequence of values of x
(chosen by V) “mixed” with the values of f (x).
This sequence may be represented by its number (using
enumeration of finite sequences of natural numbers).
If y is a sequence, let < y > be its number.
Next move of a player is given by the value v(< y >) (f (< y >)).
Strictly speaking, we should distinguish whose move there is, but
it can be done by appropriate convention.

21

Computational Asymmetry

Example with Ackermann function (continued)
Notice that if f is PR, then f (< y , x >) is PR on x when y is fixed.
We may pose W (k , y) = µx .(U(k , < y , x >) ≤ A(x)).
Again, by Kleene’s results, it is general recursive.
The rule proposed in the theorem (change k to k + 1 if
f (< y ,W (k , y) >) 6= U(< y ,W (k , y) >)) defines a general
recursive winning strategy of V.
(The change is determined by y as well.)
There are other winning strategies for V, not only based on the
theorem.

22

Conclusion

The context is rather that of scientific method, than purely
mathematical.
Often in everyday practice a massive computer based
testing/verification/simulaton is used to complete/supplant proof.
To rely on it, an absolute scientific integrity/honesty is expected.
The biais maybe inconsious or even intended. And what can be
opposed? It turns towards some sort of V/F game.
However, while the asymmetry of the rules (like backward moves
for one player) can be easily controlled, it is more difficult to detect
and estimate the difference in computational power.
There are works on GTS for Type Theory, e.g., Yamada (2018). It
was used mostly for “full completeness” results. Does “distortion
of truth” due to computational asymmetry have some independent
interest there? It is to be explored.

THANKS FOR YOUR ATTENTION!
23

References

1 T. Coquand. A Semantics of Evidence for Classical Arithmetic. - J.
of Symb. Logic, 60, 1, 325-337 (1995)

2 J.-L. Krivine. Dependent choice, ‘quote’ and the clock. TCS, 308,
1-3, 259-276 (2003).

3 D. Bonnay. Preuves et jeux sémantiques. Philosophia Scientiae,
8(2), 105-123 (2004).

4 J. Boyer, G. Sandu. Between Proof and Truth. Synthese, 187 ,
821-832 (2012).

5 S.P. Odintsov, S.O. Speranski, I.Yu. Shevchenko. Hintikka’s
Independence-Friendly Logic Meets Nelson’s Realizability. Studia
Logica, 637-670 (2018).

6 N. Yamada. Game semantics of Martin-Lof type theory. Preprint
submitted to RMS (2018)

24

