
Higher geometric sheaf theories
Towards geometric Homotopy Type Theories?

Raffael Stenzel

Department of Mathematics and Statistics, Masaryk University

May 20, 2022
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The classifying topos associated to a [label] theory T with syntactic
site C(T) is a topos of sheaves

Sh(C(T)) ↪→ Ĉ
on C(T) such that

the Yoneda embedding factors through Sh(C(T)) (so its
associated Grothendieck topology is always sub-canonical), and
for every other topos E , restriction along this Yoneda-embedding
induces an equivalence

LTop(Sh(C(T)), E) ≃ [label]-Cat(C(T), E).

Thus, all these fragments of 1st order theories have in common that
their categorical semantics is preserved by push-foward along
geometric morphisms between toposes.

Many theories in the wild fall into one of these classes of 1st order
theories, e.g. fields (with finite characteristic), (local) rings,
torsion(free) abelian groups, . . .
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By construction, for a theory T , its classifying topos is the initial
topos equipped with a T-model. E.g. it is the initial topos with a
(local) ring object, . . . Thus,

the theory of classifying toposes allows to synthesize fairly
involved internal categorical objects in toposes by way of a fairly
easy-to-manage syntax;
knowing that a given topos is the classifying topos of some sort
of theory can be valuable information about the topos itself
from a practical perspective as well. E.g. obviously, if it classifies
a cartesian theory, it is a presheaf topos and hence as tame as it
gets. Or, if it classifies a coherent theory, it still always has
enough points (viz. Deligne Completeness Theorem).
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The∞-categorical situation
An analogous translation in the basic cartesian case has implicitly
been established in the literature: By Kapulkin, Lumsdaine ([5]) and
Kapulkin, Szumiło ([4]) on the one hand, and by standard
∞-categorical constructions on the other.
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The∞-categorical situation

Here, the same realm of potential applications applies:
1. Higher geometric theories for structures arising in for instance
higher algebra?

2. Again, knowing that an∞-topos is the classifying∞-topos of
some sort of theory yields intimate information about the topos
itself. For instance,

Proposition
Every lextensive∞-topos has enough points, is topological and
hypercomplete (i.e. it validates Whitehead’s theorem).
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Higher geometric categories and their sheaf theories
What is a higher geometric∞-category?

Approach: Replace the categorical interpretation of symbolic
predicates as sub-objects by the proof-relevant interpretation as
general arrows, and require suitable categorical structure not for the
sub-object posets only but for the full slices.

This underlies for example Anel and Joyal’s definition of∞-logoi as
∞-categorical pretoposes ([1]).

Definition
Given a regular cardinal κ, an∞-category C is κ-geometric if it is left
exact and has universal κ-small colimits.
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Higher geometric categories and their sheaf theories
What is a higher geometric sheaf?

Idea: In all examples of classifying 1-toposes, the according syntactic
sites are sites of colimit covers: Every notion of theory determines
some idiosyncratic shape of diagram that we define to be covering
over their colimit.

The consideration of more general shapes of diagrams than those
considered in the ordinary categorical setting is due to proof
relevance of the syntax, which is reflected by the fact that∞-toposes
are generally not topological over their canonical base.

So, which colimits should we consider?
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Higher covering diagrams

Naive idea: Take all κ-small diagrams.
Problem: This generally does not yield a sheaf theory, in the sense
that its∞-category of sheaves is not always an∞-topos: Whenever C
is locally presentable, it is as far away from being an∞-topos as C
itself.

Definition
A (κ-)small higher covering diagram in an∞-category C with pullbacks
and (κ-)small colimits is a diagram F : I→ C such that

The∞-category I has pullbacks and F preserves them;
F covers not only its colimit, but it “locally covers” all iterated
pullbacks of components Fi, Fj over colimF as well.

Say a presheaf F : Cop → S is a higher (κ-)geometric sheaf if takes
colimits of (κ-)small higher covering diagrams in C to limits of spaces.
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Let Sh(C) ⊆ Ĉ denote the∞-category of such higher (κ-)geometric
sheaves.

Theorem
Whenever C is a small κ-geometric∞-category, the∞-category Sh(C) is
a left exact localization of Ĉ and hence an∞-topos.

Proposition
The∞-topos Sh(C) over a κ-geometric∞-category C is generally not
hypercomplete (and so does generally not have enough points).

Proposition
The topological part of Sh(C) over any κ-geometric∞-category C is
given exactly by the ordinary geometric Grothendieck topology on C
(whenever κ is uncountable!). The associated cotopological localization
is generally non-trivial.
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Let Sh(C) ⊆ Ĉ denote the∞-category of such higher (κ-)geometric
sheaves.

Theorem
Whenever C is a small κ-geometric∞-category, the∞-category Sh(C) is
a left exact localization of Ĉ and hence an∞-topos.
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Proposition
Whenever C is already an∞-topos itself, then the notion of higher
geometric sheaf coincides with Lurie’s definition of sheaf on an∞-topos.
In particular, every∞-topos is equivalent to the sheaf theory of
geometric sheaves over itself.

Thus, Sh(C) is canonical for∞-toposes C. Non-triviality of the
cotopological localization above implies that the ordinary geometric
Grothendieck topology is not!

Definition
The∞-category GeoCat(κ) of (κ-)geometric∞-categories is given by
(κ-)geometric∞-categories and left exact functors between them
which preserve colimits of (κ-)small higher covering diagrams.
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(κ-)geometric∞-categories and left exact functors between them
which preserve colimits of (κ-)small higher covering diagrams.
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Corollary
The forgetul functor

U : LTop → GeoCat(κ)

has a left adjoint given objectwise by Sh(C). For κ proper class sized, the
forgetful functor U is fully faithful.

Question: Is a corresponding geometricMLTTΣ,Id,1,colim feasible,
where the higher inductive type former “colim” is defined for all
inputs of (finite) higher covering diagrams?

Thank you!
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